80 resultados para Electron states
Resumo:
We show that a dense spectrum of chaotic multiply excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of low-energy electron recombination of Au25+ shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht [J. Phys. B 31, 2415 (1998)].
Resumo:
Recent calculations of doubly-excited states for two and four-electron states in neutral atoms and ions are described. In particular the radiative properties of these states are considered. It is pointed out that some of these states live so long that triply-excited states perhaps can be formed in neutralisation processes at surfaces. © 1991 Springer-Verlag.
Resumo:
The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.
Resumo:
The band structure of the intercalation complex of LiTiS has been computed using a semi-empirical tight-binding method and this is compared with the results of a revised TiS calculation. The results obtained confirm that changes in the basic electrical characteristics of TiS, which occur when it is intercalated with lithium, can be attributed to a rigid-band filling of its lowest unoccupied electron states as has previously been proposed. However, they also suggest that intercalation can act to alter the nature and the dispersion of some of the energy bands in the unintercalated crystal. The bands which are most affected by the process are those which derive from orbitals which have the same symmetry as the lithium 2s orbital, namely, the titanium 4s conduction level and the tightly bound sulphur 3s levels.
Resumo:
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.
Resumo:
We measured ejected electron spectra caused by autoionization of doubly excited states in He atoms; the excited He was made by double electron capture of low-energy He2+ ions colliding with Ba atoms. Measurements were performed by means of zero degree electron spectroscopy at projectile energies from 40 to 20 keV. Electron spectra due to autoionization from the states He(2lnl') to He+(1s) for n greater than or equal to2, and those from He(3lnl') to He+ (2s or 2p) for n greater than or equal to3, were observed. Line peaks in the spectra were identified by comparing observed electron spectra with those of several theoretical calculations. It was found that doubly excited states of relatively high angular momenta such as the D and F terms were conspicuously created in a quite different manner from the cases of the production of doubly excited states by the use of photon, electron, or ion impacts on neutral He atoms. Rydberg states with large n values were observed with high population in both the He(2lnl') and He(3lnl') series. Other remarkable features in the electron spectra are described and the mechanisms for the production of these electron spectra are discussed qualitatively.
Resumo:
It has been suggested (Gribakin et al 1999 Aust. J. Phys. 52 443–57, Flambaum et al 2002 Phys. Rev. A 66 012713) that strongly enhanced low-energy electron recombination observed in Au25+ (Hoffknecht et al 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2415–28) is mediated by complex multiply excited states, while simple dielectronic excitations play the role of doorway states for the electron capture process. We present the results of an extensive study of con?guration mixing between doubly excited (doorway) states and multiply excited states which account for the large electron recombination rate on Au25+ . A detailed analysis of spectral statistics and statistics of eigenstate components shows that the dielectronic doorway states are virtually ‘dissolved’ in complicated chaotic multiply excited eigenstates. This work provides a justi?cation for the use of statistical theory to calculate the recombination rates of Au25+ and similar complex multiply charged ions. We also investigate approaches which allow one to study complex chaotic many-body eigenstates and criteria of strong con?guration mixing, without diagonalizing large Hamiltonian matrices.
Resumo:
Total cross sections for electron capture are calculated for collisions of fast protons and a-particles with atomic hydrogen. The distorted-wave impulse approximation is applied over the energy range 10-1500 keV/u. State-selective results are given for the 1s, 2s and 2p levels. Both the post and prior forms of the model are calculated and compared with results from other theories and experimental measurements. In general the model performs very well in comparison with experiment over this energy range though discrepancies arise at lower energies.
Resumo:
We have performed an R-matrix with pseudo-states (RMPS) calculation of electron-impact excitation in C2+.Collision strengths and effective collision strengths were determined for excitation between the lowest 24 terms, including all those arising from the 2s3l and 2s4l configurations. In the RMPS calculation, 238 terms (90 spectroscopic and 148 pseudo-state) were employed in the close-coupling (CC) expansion of the target. In order to investigate the significance of coupling to the target continuum and highly excited bound states, we compare the RMPS results with those from an R-matrix calculation that incorporated all 238 terms in the configuration- interaction expansion, but only the lowest 44 spectroscopic terms in the CC expansion. We also compare our effective collision strengths with those from an earlier 12-state R-matrix calculation (Berrington et al 1989 J. Phys. B: At.Mol. Opt. Phys. 22 665). The RMPS calculation was extremely large, involving (N +1)-electron Hamiltonian matrices of dimension up to 36 085, and required the use of our recently completed suite of parallel R-matrix programs. The full set of effective collision strengths fromourRMPS calculation is available at theOakRidgeNationalLaboratoryControlledFusion Atomic Data Center web site. 1.
Resumo:
Electron-impact ionization cross sections for the 1s2s 1S and 1s2s 3S metastable states of Li+ are calculated using both perturbative distorted-wave and non-perturbative close-coupling methods. Term-resolved distorted-wave calculations are found to be approximately 15% above term-resolved R-matrix with pseudostates calculations. On the other hand, configuration-average time-dependent close-coupling calculations are found to be in excellent agreement with the configuration-average R-matrix with pseudostates calculations. The non-perturbative R-matrix and close-coupling calculations provide a benchmark for experimental studies of electron-impact ionization of metastable states along the He isoelectronic sequence.
Resumo:
Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term
Resumo:
Electron-impact ionization cross sections are calculated for the ground and metastable states of C+. Com- parisons between perturbative distorted-wave and nonperturbative time-dependent close-coupling calculations find reductions in the peak direct ionization cross sections due to electron coupling effects of approximately 5% for ground state C+ and approximately 15% for metastable state C+. Fairly small excitation-autoionization contributions are found for ground state C+, while larger excitation-autoionization contributions are found for metastable state C+. Comparisons between perturbative distorted-wave and nonperturbative R-matrix with pseudostates calculations find reductions in the peak total ionization cross sections due to electron coupling effects of approximately 15–20 % for ground state C+ and approximately 25–35 % for metastable state C+. Finally, comparisons between theory and experiment find that present and previous C+ crossed-beam measure- ments are in excellent agreement with ground state nonperturbative R-matrix with pseudostates calculations for total ionization cross sections. Combined with previous non-perturbative calculations for C, C2+, and C3+, accurate ionization cross sections and rate coefficients are now available for the ground and metastable states of all carbon ion stages.
Resumo:
To test the validity of classical trajectory and perturbative quantal methods for electron-impact ionization of H-like ions from excited states, we have performed advanced close-coupling calculations of ionization from excited states in H, Li 2+ and B 4+ using the R -matrix with pseudo states and the time-dependent close-coupling methods. Comparisons with our classical trajectory Monte Carlo (CTMC) and distorted-wave (DW) calculations show that the CTMC method is more accurate than the DW method for H, but does not improve with n and grows substantially worse with Z , while the DW method improves with Z and grows worse with n .