15 resultados para Electrodynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems related to the management of large quantum registers could be handled in the context of distributed quantum computation: unitary non-local transformations among spatially separated local processors are realized performing local unitary transformations and exchanging classical communication. In this paper, a scheme is proposed for the implementation of universal non-local quantum gates such as a controlled NOT (CNOT) and a controlled quantum phase gate (CQPG). The system chosen for their physical implementation is a cavity-quantum-electrodynamics (CQED) system formed by two spatially separated microwave cavities and two trapped Rydberg atoms. The procedures to follow for the realization of each step necessary to perform a specific non-local operation are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a hitherto largely unexplored regime of cavity quantum electrodynamics in which a highly-reflective element positioned between the end-mirrors of a typical Fabry--P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy. We examine applications of this generic `optical coalescence' phenomenon for the generation of enhanced photon--phonon nonlinearities in optomechanics and atom--photon nonlinearities in cavity quantum electrodynamics with strongly-coupled emitters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Fortran program SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. The dynamics can be determined classically via the Lorentz force and Landau–Lifshitz equations or, alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo routines. Multiple background fields can be included in the simulation and, where applicable, the propagation direction, field type (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The realization of nonclassical states is an important task for many applications of quantum information processing. Usually, properly tailored interactions, different from goal to goal, are considered in order to accomplish specific tasks within the general framework of quantum state engineering. In this paper, we remark on the flexibility of a cross-Kerr nonlinear coupling in hybrid systems as an important ingredient in the engineering of nonclassical states. The general scenario we consider is the implementation of high cross-Kerr nonlinearity in cavity-quantum electrodynamics. In this context, we discuss the possibility of performing entanglement transfer and swapping between matter qubits and light fields initially prepared in separable coherent states. The recently introduced concept of entanglement reciprocation is also considered and shown to be possible with our scheme. We reinterpret some of our results in terms of applications of a generalized Ising interaction to systems of different nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose schemes for entanglement concentration and purification for qubit systems encoded in flying atomic pairs. We use cavity-quantum electrodynamics as an illustrative setting within which our proposals can be implemented. Maximally entangled pure states of qubits can be produced as a result of our protocols. In particular, the concentration protocol yields Bell states with the largest achievable theoretical probability while the purification scheme produces arbitrarily pure Bell states. The requirements for the implementation of these protocols are modest, within the state of the art, and we address all necessary steps in two specific setups based on experimentally mature microwave technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how our recently proposed scheme for the measurement of the micromaser linewidth, which relates the phase diffusion dynamics of the cavity field to the population statistics of probe atoms, can be applied in the presence of trapping states, where the phase diffusion approximation does not strictly hold. This should allow the observation of the peculiar linewidth oscillations versus atomic pumping which are expected in this regime, and whose origin lies in the quantum nature of the cavity field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a scheme to relate the phase diffusion dynamics of the micromaser field to the measured atomic population statistics. This can allow us to measure the linewidth of the micromaser spectrum and to solve a relevant decoherence problem in cavity quantum electrodynamics. The main steps are (i) a suitable preparation of the cavity field state to generate coherences, (ii) the transfer of information on the dynamics of field coherences to probe atoms by the action of an external resonant coherent field and (iii) the derivation of the phase diffusion rate, hence the micromaser linewidth, from the measured population statistics of the probe atoms. The method can be applied even in the presence of trapping states, where peculiar linewidth oscillations are expected for increasing pump rate, due to the quantum nature of the micromaser field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a scheme to strongly enhance the readout sensitivity of the squared displacement of a mobile scatterer placed in a Fabry-Pérot cavity. We investigate the largely unexplored regime of cavity electrodynamics in which a highly reflective element positioned between the end mirrors of a symmetric Fabry-Pérot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy and interfere in the cavity output field. In the case of a movable middle reflector we show that the interference in this generic "optical coalescence" phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of gamma-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced gamma-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread that is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.