47 resultados para Electric testing.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
We test current numerical implementations of laser-matter interactions by comparison with exact analytical results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical emission spectra in all considered regimes, except for the harmonic structures often singled out as the most significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally constant field approximation.
Resumo:
One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.
Resumo:
The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at -20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.
Resumo:
One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney and Landy's (1989) "human depth combination rule". They advocate that the combination of depth cues by the visual sysetem is best described by a weighted linear model. The present experiments tested whether the linear combination rule applies to the integration of texture and shading. As would be predicted by a linear combination rule, the weight assigned to the shading cue did vary as a function of its curvature value. However, the weight assigned to the texture cue varied systematically as a function of the curvature value of both cues. Here we descrive a non-linear model which provides a better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the goodness of fit for all models tested. These results support the hypothesis that the locus of cue integration is a curvature map, rather than a depth map. We conclude that the linear comination rule does not generalize to the integration of shading and texture, and that for these cues it is likely that integration occurs after the recovery of surface curvature.