9 resultados para Echocardiographic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress plays an important role in the development of cardiac remodeling after myocardial infarction (MI), but the sources of oxidative stress remain unclear. We investigated the role of Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase in the development of cardiac remodeling after MI. Adult Nox2(-/-) and matched wild-type (WT) mice were subjected to coronary artery ligation and studied 4 weeks later. Infarct size after MI was similar in Nox2(-/-) and WT mice. Nox2(-/-) mice exhibited significantly less left ventricular (LV) cavity dilatation and dysfunction after MI than WT mice (eg, echocardiographic LV end-diastolic volume: 75.7+/-5.8 versus 112.4+/-12.3 microL; ejection fraction: 41.6+/-3.7 versus 32.9+/-3.2%; both P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Glucagon-like peptide-1 (GLP-1) therapies are routinely used for glycaemic control in diabetes and their emerging cardiovascular actions have been a major recent research focus. In addition to GLP-1 receptor activation, the metabolically-inactive breakdown product, GLP-1(9-36)amide, also appears to exert notable cardiovascular effects, including protection against acute cardiac ischaemia. Here, we specifically studied the influence of GLP-1(9-36)amide on chronic post-myocardial infarction (MI) remodelling, which is a major driver of heart failure progression.

METHODS: Adult female C57BL/6 J mice were subjected to permanent coronary artery ligation or sham surgery prior to continuous infusion with GLP-1(9-36)amide or vehicle control for 4 weeks.

RESULTS: Infarct size was similar between groups with no effect of GLP-1(9-36)amide on MI-induced cardiac hypertrophy, although modest reduction of in vitro phenylephrine-induced H9c2 cardiomyoblast hypertrophy was observed. Whilst echocardiographic systolic dysfunction post-MI remained unchanged, diastolic dysfunction (decreased mitral valve E/A ratio, increased E wave deceleration rate) was improved by GLP-1(9-36)amide treatment. This was associated with modulation of genes related to extracellular matrix turnover (MMP-2, MMP-9, TIMP-2), although interstitial fibrosis and pro-fibrotic gene expression were unaltered by GLP-1(9-36)amide. Cardiac macrophage infiltration was also reduced by GLP-1(9-36)amide together with pro-inflammatory cytokine expression (IL-1β, IL-6, MCP-1), whilst in vitro studies using RAW264.7 macrophages revealed global potentiation of basal pro-inflammatory and tissue protective cytokines (e.g. IL-1β, TNF-α, IL-10, Fizz1) in the presence of GLP-1(9-36)amide versus exendin-4.

CONCLUSIONS: These data suggest that GLP-1(9-36)amide confers selective protection against post-MI remodelling via preferential preservation of diastolic function, most likely due to modulation of infiltrating macrophages, indicating that this often overlooked GLP-1 breakdown product may exert significant actions in this setting which should be considered in the context of GLP-1 therapy in patients with cardiovascular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatic heart disease (RHD) is the largest cardiac cause of morbidity and mortality in the world's youth. Early detection of RHD through echocardiographic screening in asymptomatic children may identify an early stage of disease, when secondary prophylaxis has the greatest chance of stopping disease progression. Latent RHD signifies echocardiographic evidence of RHD with no known history of acute rheumatic fever and no clinical symptoms.

OBJECTIVE: Determine the prevalence of latent RHD among children ages 5-16 in Lilongwe, Malawi.

DESIGN: This is a cross-sectional study in which children ages 5 through 16 were screened for RHD using echocardiography.

SETTING: Screening was conducted in 3 schools and surrounding communities in the Lilongwe district of Malawi between February and April 2014.

OUTCOME MEASURES: Children were diagnosed as having no, borderline, or definite RHD as defined by World Heart Federation criteria. The primary reader completed offline reads of all studies. A second reader reviewed all of the studies diagnosed as RHD, plus a selection of normal studies. A third reader served as tiebreaker for discordant diagnoses. The distribution of results was compared between gender, location, and age categories using Fisher's exact test.

RESULTS: The prevalence of latent RHD was 3.4% (95% CI = 2.45, 4.31), with 0.7% definite RHD and 2.7% borderline RHD. There was no significant differences in prevalence between gender (P = .44), site (P = .6), urban vs. peri-urban (P = .75), or age (P = .79). Of those with definite RHD, all were diagnosed because of pathologic mitral regurgitation (MR) and 2 morphologic features of the mitral valve. Of those with borderline RHD, most met the criteria by having pathological MR (92.3%).

CONCLUSION: Malawi has a high rate of latent RHD, which is consistent with other results from sub-Saharan Africa. This study strongly supports the need for a RHD prevention and control program in Malawi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The development of heart failure is associated with changes in the size, shape, and structure of the heart that has a negative impact on cardiac function. These pathological changes involve excessive extracellular matrix deposition within the myocardial interstitium and myocyte hypertrophy. Alterations in fibroblast phenotype and myocyte activity are associated with reprogramming of gene transcriptional profiles that likely requires epigenetic alterations in chromatin structure. The aim of our work was to investigate the potential of a currently licensed anticancer epigenetic modifier as a treatment option for cardiac diseases associated with hypertension-induced cardiac hypertrophy and fibrosis.

METHODS AND RESULTS: The effects of DNA methylation inhibition with 5-azacytidine (5-aza) were examined in a human primary fibroblast cell line and in a spontaneously hypertensive rat (SHR) model. The results from this work allude to novel in vivo antifibrotic and antihypertrophic actions of 5-aza. Administration of the DNA methylation inhibitor significantly improved several echocardiographic parameters associated with hypertrophy and diastolic dysfunction. Myocardial collagen levels and myocyte size were reduced in 5-aza-treated SHRs. These findings are supported by beneficial in vitro effects in cardiac fibroblasts. Collagen I, collagen III, and α-smooth muscle actin were reduced in a human ventricular cardiac fibroblast cell line treated with 5-aza.

CONCLUSION: These findings suggest a role for epigenetic modifications in contributing to the profibrotic and hypertrophic changes evident during disease progression. Therapeutic intervention with 5-aza demonstrated favorable effects highlighting the potential use of this epigenetic modifier as a treatment option for cardiac pathologies associated with hypertrophy and fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heart failure with preserved ejection fraction (HFPEF) is a major health problem associated with myocardial leukocyte infiltration, inflammation, and fibrosis. Monocyte and macrophage subsets play a role in HFPEF but have not been studied. We analyzed peripheral blood monocyte phenotype and plasma markers of monocyte activation in patients with HFPEF, asymptomatic LV diastolic dysfunction (aLVDD), and asymptomatic hypertension (aHTN).

METHODS AND RESULTS: Peripheral blood was collected from 23 aHTN, 30 aLVDD, and 30 HFPEF patients. Peripheral cytokines of classic/pro-inflammatory (tumor necrosis factor alpha, interleukin (IL) 12, IL-6, monocyte chemoattractant protein 1, C-X-C motif chemokine 10) and alternative/anti-inflammatory monocytes (chemokine-C-C motif ligand (CCL) 17, CCL-18, soluble CD163) were increased in aLVDD and HFPEF. Peripheral blood mononuclear cells and monocytes were purified and surface-stained for CD14, CD16, CD163, and CD206. Peripheral monocyte percentage was increased in aLVDD and HFPEF and correlated with echocardiographic LVDD indices. Classic/pro-inflammatory monocyte numbers were increased in aLVDD and HFPEF, and alternative/anti-inflammatory monocyte numbers were increased in HFPEF. CD163 M2-macrophage receptor was reduced in HFPEF. Culture of healthy donor monocytes (n = 3) with HFPEF patient-derived sera (n = 6) promoted M2 macrophage features as evidenced by altered morphology and genes (CD206, IL-10).

CONCLUSIONS: Increased peripheral inflammation, monocytosis, and monocyte differentiation to anti-inflammatory/profibrotic M2 macrophages likely associate with HFPEF and its precedent asymptomatic LVDD phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Persistently elevated natriuretic peptide (NP) levels in heart failure (HF) patients are associated with impaired prognosis. Recent work suggests that NP-guided therapy can improve outcome, but the mechanisms behind an elevated BNP remain unclear. Among the potential stimuli for NP in clinically stable patients are persistent occult fluid overload, wall stress, inflammation, fibrosis, and ischemia. The purpose of this study was to identify associates of B-type natriuretic peptide (BNP) in a stable HF population.

METHODS: In a prospective observational study of 179 stable HF patients, the association between BNP and markers of collagen metabolism, inflammation, and Doppler-echocardiographic parameters including left ventricular ejection fraction (LVEF), left atrial volume index (LAVI), and E/e prime (E/e') was measured.

RESULTS: Univariable associates of elevated BNP were age, LVEF, LAVI, E/e', creatinine, and markers of collagen turnover. In a multiple linear regression model, age, creatinine, and LVEF remained significant associates of BNP. E/e' and markers of collagen turnover had a persistent impact on BNP independent of these covariates.

CONCLUSION: Multiple variables are associated with persistently elevated BNP levels in stable HF patients. Clarification of the relative importance of NP stimuli may help refine NP-guided therapy, potentially improving outcome for this at-risk population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Limited data are available concerning the evolution of the left atrial volume index (LAVI) in pre-heart failure (HF) patients. The aim of this study was to investigate clinical characteristics and serological biomarkers in a cohort with risk factors for HF and evidence of serial atrial dilatation.

METHODS AND RESULTS: This was a prospective substudy within the framework of the STOP-HF cohort (NCT00921960) involving 518 patients with risk factors for HF electively undergoing serial clinical, echocardiographic, and natriuretic peptide assessment. Mean follow-up time between assessments was 15 ± 6 months. 'Progressors' (n = 39) were defined as those with serial LAVI change ≥3.5 mL/m(2) (and baseline LAVI between 20 and 34 mL/m(2)). This cut-off was derived from a calculated reference change value above the biological, analytical, and observer variability of serial LAVI measurement. Multivariate analysis identified significant baseline clinical associates of LAVI progression as increased age, beta-blocker usage, and left ventricular mass index (all P < 0.05). Serological biomarkers were measured in a randomly selected subcohort of 30 'Progressors' matched to 30 'Non-progressors'. For 'Progressors', relative changes in matrix metalloproteinase 9 (MMP9), tissue inhibitor of metalloproteinase 1 (TIMP1), and the TIMP1/MMP9 ratio, markers of interstitial remodelling, tracked with changes in LAVI over time (all P < 0.05).

CONCLUSION: Accelerated LAVI increase was found to occur in up to 14% of all pre-HF patients undergoing serial echocardiograms over a relatively short follow-up period. In a randomly selected subcohort of 'Progressors', changes in LAVI were closely linked with alterations in MMP9, TIMP1, and the ratio of these enzymes, a potential aid in highlighting this at-risk group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: This study was designed to evaluate the impact of eplerenone on collagen turnover in preserved systolic function heart failure (HFPSF).

BACKGROUND: Despite growing interest in abnormal collagen metabolism as a feature of HFPSF with diastolic dysfunction, the natural history of markers of collagen turnover and the impact of selective aldosterone antagonism on this natural history remains unknown.

METHODS: We evaluated 44 patients with HFPSF, randomly assigned to control (n = 20) or eplerenone 25 mg daily (n = 24) for 6 months, increased to 50 mg daily from 6 to 12 months. Serum markers of collagen turnover and inflammation were analyzed at baseline and at 6 and 12 months and included pro-collagen type-I and -III aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha. Doppler-echocardiographic assessment of diastolic filling indexes and tissue Doppler analyses were also obtained.

RESULTS: The mean age of the patients was 80 +/- 7.8 years; 46% were male; 64% were receiving an angiotensin-converting enzyme inhibitor, 34% an angiotensin-II receptor blocker, and 68% were receiving beta-blocker therapy. Pro-collagen type-III and -I aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha increased with time in the control group. Eplerenone treatment had no significant impact on any biomarker at 6 months but attenuated the increase in pro-collagen type-III aminoterminal peptide at 12 months (p = 0.006). Eplerenone therapy was associated with modest effects on diastolic function without any impact on clinical variables or brain natriuretic peptide.

CONCLUSIONS: This study demonstrates progressive increases in markers of collagen turnover and inflammation in HFPSF with diastolic dysfunction. Despite high background utilization of renin-angiotensin-aldosterone modulators, eplerenone therapy prevents a progressive increase in pro-collagen type-III aminoterminal peptide and may have a role in management of this disease. (The Effect of Eplerenone and Atorvastatin on Markers of Collagen Turnover in Diastolic Heart Failure; NCT00505336).