84 resultados para Eastern Alps
Resumo:
Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Wurmian) at Unterangerberg at similar to 120-110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Wiirmian interstadial (MIS 5c) is preserved. During the second Early Wiirmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to similar to 70-60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between similar to 55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at similar to 45 ka and/or was truncated by ice during the Last Glacial Maximum. (C) 2013 Elsevier Ltd. All rights reserved.
Late-Pleistocene palaeoclimate and glacial activity recorded from lake sediments in the Eastern Alps
Resumo:
Greenland ice core data show that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warming-cooling cycles. While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous and well dated records of the time period preceding the LGM are only known from stalagmites. Although most of the sediment that filled the Alpine valleys prior to the LGM was eroded, thick successions have been locally preserved as terraces along the flanks of large longitudinal valleys. The Inn valley in Tyrol (Austria) offers the most striking examples of Pleistocene terraces in the Eastern Alps. A large number of drill cores provides the opportunity to study these sediments for the first time in great detail. Our study focuses on the river terrace of Unterangerberg near Wörgl, where LGM gravel and till were deposited on top of (glacio)lacustrine sediments. The cores comprise mostly silty material, ranging from organic-rich to organic-poor and dropstone-rich beds. A diamictic layer classified as basal till is present at the bottom of the lake sediments. Radiocarbon ages of plant macro remains from the lake sequences indicate deposition between ~40 and >50 cal. ka BP. Luminescence ages obtained from fine-grain polymineral (4-11 μm) samples suggest an age of the lake deposits between ~40 to 60 ka and are consistent with the radiocarbon dates. Sedimentological analyses indicate that sedimentation in these palaeolakes was driven by local processes, but also by climatically induced changes in nearby glacier activity. These observations strongly hint towards a significant ice advance in the Eastern Alps during the early last glacial and subsequent mild interstadial conditions, supporting a local coniferous forest vegetation.
Resumo:
The integrated stratigraphic, radiocarbon and palynological record from an end-moraine system of the Oglio valley glacier (Italian Alps), propagating a lobe upstream in a lateral reach, provided evidence for a complete cycle of glacial advance, culmination and withdrawal during the Last Glacial Maximum and early Lateglacial. The glacier culminated in the end moraine shortly after 25.8 +/- 0.8 ka cal BP, and cleared the valley floor 18.3-17.2 +/- 0.3 ka cal BP. A primary paraglacial phase is then recorded by fast progradation of the valley floor.
As early as 16.7 +/- 0.3 ka cal BP, early stabilization of alluvial fans and lake filling promoted expansion of cembran pine. This is an unprecedented evidence of direct tree response to depletion of paraglacial activity during the early Lateglacial, and also documents the cembran pine survival in the mountain belt of the Italian Alps during the last glaciation. Between 16.1 and 14.6 +/- 0.5 ka cal BP, debris cones emplacement points to a moisture increase favouring tree Betula and Pinus sylvestris-mugo. A climate perturbation renewed paraglacial activity. According to cosmogenic ages on glacial deposits and AMS radiocarbon ages from lake records in South-Eastern Alps such phase compares favourably with the Gschnitz stadial and with the oscillations recorded at lakes Ragogna. Langsee and Jeserzersee, most probably forced by the latest freshening phases of the Heinrich Event 1.
A further sharp pine rise marks the subsequent onset of Bolling interstadial. The chronology of the Oglio glacier compares closely with major piedmont glaciers on the Central and Eastern Alpine forelands. On the other hand, the results of the present study imply a chronostratigraphic re-assessment of the recent geological mapping of the Central Italian Alps. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
ABSTRACT
The start of the Upper Wurmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Wurmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re-sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40-year-old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 C-14 ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653-681 m in the clay pit was deposited 34-36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32-33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps.
Glacier collapse occurred soon after 17.46 +/- 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 +/- 0.16 and 15.5 +/- 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed
Resumo:
The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Tischoferhohle and Pendling-Barenhohle near Kufstein, Tyrol, are among the only locations where remains of cave bear, Ursus spelaeus-group, were found in the western part of Austria. One sample from each site was radiocarbon-dated four decades ago to ca. 28 C-14 ka BP. Here we report that attempts to date additional samples from Pendling-Barenhohle have failed due to the lack of collagen, casting doubts on the validity of the original measurement. We also unsuccessfully tried to date flowstone clasts embedded in the bone-bearing sediment to provide maximum constraints on the age of this sediment. Ten cave bear bones from Tischoferhohle showing good collagen preservation were radiocarbon-dated to 31.1-39.9 C-14 ka BP, again pointing towards an age underestimation by the original radiocarbon-dated sample from this site. These new dates from Tischoferhohle are therefore currently the only reliable cave bear dates in western Austria and constrain the interval of cave occupation to 44.3-33.5 cal ka BP. We re-calibrate and re-evaluate dates of alpine cave bear samples in the context of available palaeoclimate information from the greater alpine region covering the transition into the Last Glacial Maximum, eventually leading to the demise of this megafauna.
Resumo:
Results of a fossil Coleoptera (beetle) fauna from a fen edge sequence from Hatfield Moors, Humberhead Levels, are presented. Mire ontogeny inferred from this location and others are discussed, particularly in the light of previous palynological and plant macrofossil investigations. Peat initiation across most of the site centres around 3000 cal BC, characterised by a Calluna-Eriophorum heath with areas of Pinus-Betula woodland. The onset of peat accumulation on the southern margins of the site was delayed until 1520-1390 cal BC and appears to overlap closely with a recurrence surface at a pollen site (HAT 2) studied by Brian Smith (1985, 2002) dated to 1610-1440 cal BC, suggesting that increased surface wetness may have caused mire expansion at this time. The faunas illustrate the transition from eutrophic and mesotrophic fen to ombrotrophic raised mire, although the significance of both Pinus- and Calluna-indicating species through the sequence suggests that heath habitats may have continued to be important. Elsewhere, this earlier phase of rich fen is lacking and mesotrophic mire developed immediately above nutrient poor sands, with ombrotrophic conditions indicated soon after. Correspondence analysis of the faunas provides valuable insights into the importance of sandy heath habitats on Hatfield Moors. The continuing influence of the underlying coversands suggests these may have been instrumental in mire ontogeny. The research highlights the usefulness of using Coleoptera to assess mire ontogeny, fluctuations in site hydrology and vegetation cover, particularly when used in conjunction with other peatland proxies. The significance of a suite of extinct beetle species is discussed with reference to forest history and climate change.
Resumo:
Tree-ring analysis of sub-fossil Pinus sylvestris L. and Quercus sp. and their associated sub-fossil insect assemblages from tree rot holes have been used to study a prehistoric forest buried in the basal peats at Tyrham Hall Quarry, Hatfield Moors SSSI, in the Humberhead Levels, eastern England. The site provided a rare opportunity to examine the date, composition, age structure and entomological biodiversity of a mid-Holocene Pinus-dominated forest. The combined approaches of dendrochronology and palaeoentomology have enabled a detailed picture of the forest to be reconstructed, within a precise time frame. The Pinus chronology has been precisely dated to 2921- 2445 BC against the English Quercus master curve and represents the first English Pinus chronology to be dendrochronologically dated. A suite of important xylophilous (wood-loving) beetles that are today very rare and four species that no longer live within the British Isles were also recovered, their disappearance associated with the decline in woodland habitats as well as possible climate change. The sub-fossil insects indicate that the characteristic species of the site's modern-day fauna were already in place 4000 years ago. These findings have important implications in terms of maintaining long-term invertebrate biodiversity of mire sites.
Resumo:
This article examines Greek-Turkish crisis behaviour in the Eastern Mediterranean over the past two decades. Crises are first defined and classified, after which a number of common misperceptions are then addressed in light of recent experience. Three broad categories of foreign policy crises are analyzed: 1) those involving ethnically related minorities across the border; 2) those with 'alien' minorities within borders; and 3) those with third countries involving territories and resources. The article examines whether crises are simply elite-driven or partly endorsed and motivated by mass publics in both countries, and whether Greek-Turkish crisis behaviour reflects enduring ethnic rivalries, 'genuine' security interests, or domestic political needs and norms. The article draws upon the Greek-Turkish experience of the past two decades to illuminate contemporary dilemmas and issues which policymakers face in this region.