25 resultados para EUROPIUM TRIFLATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent ionogels were prepared by doping an europium( III) tetrakis beta-diketonate complex into an imidazolium ionic liquid, followed by immobilization of the ionic liquid by confinement in a silica network. The ionogels were obtained by a non-hydrolytic method as perfect monoliths featuring both the transparency of silica and the ionic conductivity performances of ionic liquids. The ionogels contain 80 vol % of ionic liquid. The organic-inorganic hybrid materials showed a very intense red photoluminescence under ultraviolet irradiation. The red emission has a very high coloric purity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high quantum yield and an enhanced photostability was found for a europium(III) tetrakis(2-thenoyltrifluoroacetonate) complex after dissolving the complex in a weakly-coordinating imidazolium ionic liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 9-hydroxyphenal-1-one ligand forms stable 3 : 1 complexes with trivalent lanthanides, in which it acts as an antenna suitable for the visible light excitation ( up to 475 nm) of the trivalent europium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Aryl-substituted imidazo[4,5-f]-1,10-phenanthrolines were used as building blocks for metal-containing liquid crystals (metallomesogens). Imidazo[4,5-f]-1,10-phenanthrolines are versatile ligands because they can form stable complexes with various d-block transition metals, including platinum(II) and rhenium(I), as well as with lanthanide(III) and uranyl ions and they can easily be structurally modified by a judicious choice of benzaldehyde precursor. None of the ligands designed for this study were liquid-crystalline. However, mesomorphism could be induced by their coordination to various metallic fragments. The thermal behavior of the metal complexes depended on the metal-to-ligand ratio and the substitution pattern of the coordinating ligands. Complexes with a metal-to-ligand ratio of 1:1 [ML, with M = Pt(II), Re(I)] were not liquid-crystal line. The lanthanide(III) complexes with a metal-to-ligand ratio of 1:2 [ML2 with M = Ln(III)] formed an enantiotropic cubic mesophase or were not liquid-crystalline, depending on the nature of the lanthanide(III) ion and the substitution pattern of the ligands. A 1:3 uranyl complex of the type [ML3](2+) exhibited a hexagonal columnar mesophase over a broad temperature range. Self-assembled monolayers of a europium(III) complex were investigated by scanning tunneling microscopy, which revealed that the complex formed well-ordered structures over long distances at the 1-octanoic acid-graphite interface. The rhenium(I) complexes and the europium(III) complexes with 2-thenoyl-trifluoroacetonate or dibenzoylmethanate and imidazo[4,5-f]-1,10-phenanthroline showed good luminescence properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photophysical properties of lanthanide complexes have been studied extensively; however, fundamental parameters such as the intrinsic quantum yield as well as radiative and nonradiative decay rates are difficult or even impossible to measure experimentally. Herein, a photoacoustic (PA) method is proposed to determine the intrinsic quantum yield of lanthanide complexes with lifetimes in the order of milliseconds. This method is used to determine the intrinsic quantum yields for europium (III)-containing metallomesogens as well as terbium(III) complexes. The results show that the PA signal is sensitive to both the lifetime and the ratio of the fast-to-slow heat component of the samples. It is found that there is an efficient ligand sensitization and a moderate intrinsic quantum yield for the complexes. The intrinsic quantum yield of Eu3+ in the metallomesogens exhibits an obvious increase upon the isotropic liquid to smectic A transition. The proposed PA method is quite simple, and con contribute to a clearer understanding of the photophysical processes in luminescent lanthanide complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)-imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2-thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl] counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight to twenty carbon atoms (n =8. 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal. columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the Molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic: liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour Purity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids were used as solvents for dispersing luminescent lanthanide-doped LaF3:Ln(3+) nanocrystals (Ln(3+) = Eu3+ and Nd3+). To increase the solubility of the inorganic nanoparticles in the ionic liquids, the nanocrystals were prepared with different stabilizing ligands, i.e., citrate, N,N,N-trimethylglycine (betaine), and lauryldimethylglycine (lauryl betaine). LaF3:5%Ln(3+) :betaine could successfully be dispersed in 1-butyl-1-methylpyrrolidinium bis(tiifluoromethylsulfonyl)imide [C(4)mpyr][Tf2N], 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate [C(4)mpyr][TfO], and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][Tf2N] but only in limited amounts. Red photoluminescence was observed for the europium(III)-containing nanoparticles and near-infrared luminescence for the neodymium(III)-containing systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational approach to predict the thermodynamics for forming a variety of imidazolium-based salts and ionic liquids from typical starting materials is described. The gas-phase proton and methyl cation acidities of several protonating and methylating agents, as well as the proton and methyl cation affinities of many important methyl-, nitro-, and cyano- substituted imidazoles, have been calculated reliably by using the computationally feasible DFT (B3LYP) and MP2 (extrapolated to the complete basis set limit) methods. These accurately calculated proton and methyl cation affinities of neutrals and anions are used in conjunction with an empirical approach based on molecular volumes to estimate the lattice enthalpies and entropies of ionic liquids, organic solids, and organic liquids. These quantities were used to construct a thermodynamic cycle for salt formation to reliably predict the ability to synthesize a variety of salts including ones with potentially high energetic densities. An adjustment of the gas phase thermodynamic cycle to account for solid- and liquid-phase chemistries provides the best overall assessment of salt formation and stability. This has been applied to imidazoles (the cation to be formed) with alkyl, nitro, and cyano substituents. The proton and methyl cation donors studied were as follows: HCl, HBr, HI, (HO)(2)SO2, HSO3CF3 (TfOH), and HSO3(C6H4)CH3 (TsOH); CH3Cl, CH3Br, CH3I, (CH3O)(2)SO2, CH3SO3CF3 (TfOCH3) and CH3SO3(C6H4)CH3 (TsOCH3). As substitution of the cation with electron-withdrawing groups increases, the triflate reagents appear to be the best overall choice as protonating and methylating agents. Even stronger alkylating agents should be considered to enhance the chances of synthetic success. When using the enthalpies of reaction for the gas-phase reactants (eq 6) to form a salt, a cutoff value of - 13 kcal mol(-1) or lower (more negative) should be used as the minimum value for predicting whether a salt can be synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanide-containing liquid crystals exhibiting a mesophase close to room temperature were obtained by adduct formation between a long-chain salicylaldimine Schiff base and tris(2-thenoyltrifluoroacetonato)lanthanide( III) complexes or tris( benzoyltrifluoroacetonato) lanthanide( III) complexes. The mesophase was identified as a smectic A phase. The temperature range of the mesophase was found to decrease over the lanthanide series, and no mesophase was observed for the complexes of the smallest lanthanide ions. The photoluminescence of the europium( III), samarium( III), neodymium( III), and erbium( III) complexes was studied. It is shown that the clearing point can be detected by monitoring the luminescence decay time as a function of the temperature.