11 resultados para ENERGY-DISSIPATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small changes of diet may reduce CVD risk. One example is the inclusion of nuts. They are rich in fibre, unsaturated fatty acids and phytonutrients. However, their fat content and energy density raise concerns that chronic consumption will promote weight gain. Randomised intervention studies are required to evaluate whether this concern is well founded. This study's aim was to determine if the inclusion of a 1440 kJ serving of almonds in the daily diet results in positive energy balance, and body composition change. During a 23-week cross-over design study, participants were required to consume almonds for 10 weeks and were provided no advice on how to include them in their diet. For another 10 weeks (order counter-balanced), participants followed their customary diet and there was a 3-week washout between. The study group consisted of twenty women. Potential mechanisms of energy dissipation were measured. Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources. Moreover, inefficiency in the absorption of energy from almonds was documented (P <0·05). No changes in resting metabolic rate, thermic effect of food or total energy expenditure were noted. A daily 1440 kJ serving of almonds, sufficient to provide beneficial effects on cardiovascular risk factors, may be included in the diet with limited risk of weight gain. Whether this can be generalised to other high-fat energy dense foods warrants evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small-scale physical and numerical experiments were conducted to investigate the local concentration of waves (monochromatic and group) due to abrupt change of nearshore bathymetry in alongshore direction. Wave run-up motions along the shoreline were measured using an image analysis technique to compare localized concentration of wave energy, when waves propagate a over bathymetry composing rhythmic patterns of mild/steep slope bottom configurations. Measured alongshore variation of maximum wave run-up heights showed significant peak near the boundary, which has sudden alongshore change of depth, both under monochromatic and group wave trains. This phenomenon is found to be due to interaction of waves with neashore currents, which is further enhanced by excitation of long wave components by breaking of group waves. Furthermore, this paper discusses results of preliminary experiments carried out to test the effectiveness of several shore protection structure layouts in mitigating such wave concentrations. Numerical simulations were performed by using a model developed based on Nwogu (1993) Boussinesq-type equations; coupled with a transport equation to model energy dissipation due to wave breaking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a 3-D failure model for predicting the dynamic material response of composite laminates under impact loading. The formulation is based on the Continuum Damage Mechanics (CDM) approach and enables the control of the energy dissipation associated with each failure mode regardless of mesh refinement and fracture plane orientation. Internal thermodynamically irreversible damage variables were defined in order to quantify damage concentration associated with each possible failure mode and predict the gradual stiffness reduction during the impact damage process. The material model has been implemented into LS-DYNA explicit finite element code within solid elements and it has proven to be capable of reproducing experimental results with good accuracy in terms of static/dynamic responses, absorbed energy and extent of damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the tracking system used to perform a scaled vehicle-barrier crash test is reported. The scaled crash test was performed as part of a wider project aimed at designing a new safety barrier making use of natural building materials. The scaled crash test was designed and performed as a proof of concept of the new mass-based safety barriers and the study was composed of two parts: the scaling technique and of a series of performed scaled crash tests. The scaling method was used for 1) setting the scaled test impact velocity so that energy dissipation and momentum transferring, from the car to the barrier, can be reproduced and 2) predicting the acceleration, velocity and displacement values occurring in the full-scale impact from the results obtained in a scaled test. To achieve this goal the vehicle and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities. These quantities were measured during the tests using acceleration sensors and a tracking system. The tracking system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular velocities. A code was developed to extract the target velocities from the videos and the velocities obtained were then compared with those obtained integrating the accelerations provided by the sensors to check the reliability of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high-fidelity composite damage model is presented and applied to predict low-velocity impact damage, compression after impact (CAI) strength and crushing of thin-walled composite structures. The simulated results correlated well with experimental testing in terms of overall force-displacement response, damage morphologies and energy dissipation. The predictive power of this model makes it suitable for use as part of a virtual testing methodology, reducing the reliance on physical testing.  

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the accuracy of new finite element modelling approaches to predict the behaviour of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, under low cycle fatigue. ABAQUS software is used as a modelling platform. Such joints are used for portal frames and potentially have good seismic resisting capabilities, which is important for construction in developing countries. The modelling implications of a two-dimensional beam element model, a three-dimensional shell element model and a three-dimensional solid element model are reported. Quantitative and qualitative results indicate that the three-dimensional quadratic S8R shell element model most accurately predicts the hysteretic behaviour and energy dissipation capacity of the connection when compared to the test results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to investigate the nature and biomechanical properties of collagen fibers within the human myocardium. Targeting cardiac interstitial abnormalities will likely become a major focus of future preventative strategies with regard to the management of cardiac dysfunction. Current knowledge regarding the component structures of myocardial collagen networks is limited, further delineation of which will require application of more innovative technologies. We applied a novel methodology involving combined confocal laser scanning and atomic force microscopy to investigate myocardial collagen within ex-vivo right atrial tissue from 10 patients undergoing elective coronary bypass surgery. Immuno-fluorescent co-staining revealed discrete collagen I and III fibers. During single fiber deformation, overall median values of stiffness recorded in collagen III were 37±16% lower than in collagen I [p<0.001]. On fiber retraction, collagen I exhibited greater degrees of elastic recoil [p<0.001; relative percentage increase in elastic recoil 7±3%] and less energy dissipation than collagen III [p<0.001; relative percentage increase in work recovered 7±2%]. In atrial biopsies taken from patients in permanent atrial fibrillation (n=5) versus sinus rhythm (n=5), stiffness of both collagen fiber subtypes was augmented (p<0.008). Myocardial fibrillar collagen fibers organize in a discrete manner and possess distinct biomechanical differences; specifically, collagen I fibers exhibit relatively higher stiffness, contrasting with higher susceptibility to plastic deformation and less energy efficiency on deformation with collagen III fibers. Augmented stiffness of both collagen fiber subtypes in tissue samples from patients with atrial fibrillation compared to those in sinus rhythm are consistent with recent published findings of increased collagen cross-linking in this setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve the Gross-Pitaevskii equation to study energy transfer from an oscillating