2 resultados para ENCODE GASP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations within the BRCA1 and BRCA2 genes account for approximately 20% of hereditary breast cancers, with a further 10%–15% being attributable to rare mutations in moderate-risk genes and common variants in low-risk genes. The genes harbouring mutations in the remaining ∼65% of hereditary breast cancers are unknown. The identification of mutation carriers in hereditary breast and ovarian cancer (hboc) families is critical for determining who is most at risk of developing the disease and therefore who should be offered risk-reducing procedures or more intensive screening, or both.

Many of the high- and moderate-risk genes for hereditary breast cancers encode proteins that work in concert to maintain genomic stability and in dna damage signalling and repair. A novel BRCA1 protein complex identified within the research group whose target genes are involved in dna repair provided novel candidates for hboc susceptibility genes. These 12 candidate genes were sequenced in a cohort of 675 affected individuals from the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) with hereditary breast or ovarian cancer, but with no mutations in known susceptibility genes (BRCAx patients). This analysis identified 20 individuals (each from a different BRCAx family) with different potentially pathogenic variants across 6 of the candidate hboc susceptibility genes. The family members of each BRCAx index case were tested for the presence of the specific mutation identified in the proband to examine segregation with disease. To further expand on the potential role of the novel candidate hboc susceptibility genes identified in this study, the genetic variation of a second cohort of 520 Northern Irish BRCAx patients is being characterized using a 61-gene panel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology.