10 resultados para ELECTRON-PHONON


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A dynamical method for inelastic transport simulations in nanostructures is compared to a steady-state method based on nonequilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits an enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations where differences begin to emerge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electron tunnelling spectroscopy, developed to extract superconductive metals the electron-phonon spectral density, $\alpha^2F(\nu)$, is found to be a powerful tool also for extracting a more realistic pseudopotential from such metals. The pseudopotential so extracted has a range of surprising but physically reasonable properties and regenerates $\alpha^2F(\nu)$ accurately. Free from most of its long-standing uncertainties, thie pseudopotential may be useful in a number of active fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have measured the electrical transport properties of mats of single-walled carbon nanotubes (SWNT) as a function of applied electric and magnetic fields. We find that at low temperatures the resistance as a function of temperature R(T) follows the Mott variable range hopping (VRH) formula for hopping in three dimensions. Measurement of the electric field dependence of the resistance R(E) allows for the determination of the Bohr radius of a localized state a = 700nm. The magnetoresistance (MR) of SWNT mat samples is large and negative at all temperatures and fields studied. The low field negative MR is proportional to H2, in agreement with variable range hopping in two or three dimensions. 3D VRH indicates good intertube contacts, implying that the localization is due to the disorder experienced by the individual tubes. The 3D localization radius gives a measure of the ID localization length on the individual tubes, which we estimate to be >700 nm. Implications for the electron-phonon mean free path are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We give a physical interpretation of the recently demonstrated non-conservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a non-conservative force, and thus do net work around closed paths, by a formal non-invasive test procedure. Second, we show that the gain in atomic kinetic energy in time, generated by non-conservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that non-conservative forces work by angular momentum transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.