6 resultados para ELASMOBRANCH
Resumo:
Tachykinins were purified from extracts of gastrointestinal tissues of the urodele, Amphiuma tridacrylum (three-toed amphiuma), and the elasmobranch Sphyrna lewini (hammerhead shark), and from the brain of the agnathan Lampetra fluviatilis (river lamprey). The amphiuma substance P (SP) (DNPSVGQFYGLM-NH2) contains 12 amino residues compared with 11 for mammalian SP and lacks the Arg/Lys-Pro-Xaa-Pro motif that is characteristic of NK, receptor-selective agonists. Lampetra SP (RKPHPKEFVGLM-NH2) is identical to SP from the sea lamprey and the shark SP-related peptide (AKFDKFYGLM-NH2) is identical to dogfish scyliorhinin L. Amphiuma neurokinin A (NKA) (HKDAFIGLM-NH2) and lamprey NKA (HFDEFVGLM-NH2) contain 9 amino acid residues compared with 10 for mammalian NKA. The shark NKA-related peptide (ASGPTQAGIV(10)GRKRQKGEMF(20)VGLM-NH2) shows limited structural similarity to mammalian neuropeptide gamma and the teleost tachykinin, carassin but contains 24 rather than 21 amino acid residues. The data show that the primary structures of the tachykinins have been very poorly conserved during vertebrate evolution and that pressure has acted only to maintain the functionally important sequence -Phe-Xaa-Gly- Leu-Met-NH2 at the COOH-termini of the peptides.
Resumo:
There is growing interest in the mating systems of sharks and their relatives (Class Chondrichthyes) because these ancient fishes occupy a key position in vertebrate phylogeny and are increasingly in need of conservation due to widespread overexploitation. Based on precious few genetic and field observational studies, current speculation is that polyandrous mating strategies and multiple paternity may be common in sharks as they are in most other vertebrates. Here, we test this hypothesis by examining the genetic mating system of the bonnethead shark, Sphyrna tiburo, using microsatellite DNA profiling of 22 litters (22 mothers, 188 embryos genotyped at four polymorphic loci) obtained from multiple locations along the west coast of Florida. Contrary to expectations based on the ability of female S. tiburo to store sperm, the social nature of this species and the 100% multiple paternity observed in two other coastal shark species, over 81% of sampled bonnethead females produced litters sired by a single male (i.e. genetic monogamy). When multiple paternity occurred in S. tiburo, there was an indication of increased incidence in larger mothers with bigger litters. Our data suggest that sharks may exhibit complex genetic mating systems with a high degree of interspecific variability, and as a result some species may be more susceptible to loss of genetic variation in the face of escalating fishing pressure. Based on these findings, we suggest that knowledge of elasmobranch mating systems should be an important component of conservation and management programmes for these heavily exploited species.
Resumo:
Using radioimmunoassay for mammalian tachykinins, peptides with substance P-like immunoreactivity and neurokinin A-like immunoreactivity were identified in an extract of the brain of the longnose skate, Raja rhina (elasmobranch) but only a peptide with neurokinin A-like immunoreactivity was identified in the brain of the sea lamprey, Petromyzon marinus (agnathan). The primary structure of the skate peptide with substance P-like immunoreactivity (Ala-Lys-His-Asp-Lys-Phe-Tyr-Gly-Leu-Met-NH2) shows one amino acid substitution (Phe(3) --> His) compared with scyliorhinin I, previously isolated from dogfish brain and gut. The skate neurokinin A-related peptide (His-Lys-Leu-Gly-Ser-Phe-Val-Gly-Leu-Met-NH2) shows tow substitutions (Thr(3) --> Leu and Asp(4) --> Gly) compared with mammalian neurokinin A. Although the COOH-terminus of the lamprey tackhykinin (Arg-Lys-Pro-His-Pro-Lys-Gly-phe-Val-Gly-Leu-Met-NH2) resembles neurokinin A, the presence of the strongly conserved Lys/Arg-Pro-Xaa-Pro motif at the NH2-terminus of the peptide indicates greater structural similarity with substance P. The additional arginine residue at position 1 in the peptide suggests that the lamprey is utilizing a site of postranslational processing in the tachykinin precursor that is different from the equivalent site in mammalian and other lower vertebrate preprotachykinin(s).
Resumo:
Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.
Resumo:
The continuing over-exploitation of traditional coastal stocks has resulted in the shift of commercial fishing towards deep-sea ecosystems in many parts of the world. The effects on target and non-target species have been dramatic; particularly for the deep-sea sharks. With the aim of providing tools that will allow the assessment of population genetic structure of Centroselachus crepidater, novel microsatellite loci have been developed for this deep-sea elasmobranch. Seven of these markers showed between 3 and 7 alleles per locus in two North Atlantic populations, with observed and expected heterozygosities between 0.18-0.95 and 0.25-0.82, respectively. Additionally, ten loci cross-amplify in other Elasmobranch species.