5 resultados para EIT Regolarizzazione Bioimpedenza NanoBio4Trans
Resumo:
We analyse the possibilities for quantum state engineering offered by a model for Kerr-type nonlinearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [2002, Phys. Rev. A, 65, 33833]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows some insights into the generation of an entangled state of cavity modes.
Resumo:
The structure and properties of a newly emerged solar active region (NOAA Active Region 7985) are discussed using the Coronal Diagnostic Spectrometer (CDS) and the Extreme- Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory. CDS obtained high-resolution EUV spectra in the 308-381 Angstrom and 513-633 Angstrom wavelength ranges, while EIT recorded full-disk EUV images in the He II (304 Angstrom), Fe IX/X (171 Angstrom), Fe xii (195 Angstrom), and Fe XV (284 Angstrom) bandpasses. Electron density measurements from Si rx, Si X, Fe xii, Fe XIII, and Fe xiv line ratios indicate that the region consists of a central high- density core with peak densities of the order of 1.2 x 10(10) cm(-3), which decrease monotonically to similar to5.0 X 10(8) cm(-3) at the active region boundary. The derived electron densities also vary systematically with temperature. Electron pressures as a function of both active region position and temperature were estimated using the derived electron densities and ion formation temperatures, and the constant pressure assumption was found to be an unrealistic simplification. Indeed, the active region is found to have a high-pressure core (1.3 x 10(16) cm(-3) K) that falls to 6.0 x 10(14) cm(-3) K just outside the region. CDS line ratios from different ionization stages of iron, specifically Fe xvi (335.4 Angstrom) and Fe xiv (334.4 Angstrom), were used to diagnose plasma temperatures within the active region. Using this method, peak temperatures of 2.1 x 10(6) K were identified. This is in good agreement with electron temperatures derived using EIT filter ratios and the two-temperature model of Zhang et al. The high- temperature emission is confined to the active region core, while emission from cooler (1-1.6) x 10(6) K lines originates in a system of loops visible in EIT 171 and 195 X images. Finally, the three-dimensional geometry of the active region is investigated using potential field extrapolations from a Kitt Peak magnetogram. The combination of EUV and magnetic field extrapolations extends the "core-halo" picture of active region structure to one in which the core is composed of a number of compact coronal loops that confine the hot, dense, high- pressure core plasma while the halo emission emerges from a system of cooler and more extended loops.
Resumo:
A detailed study is presented of the decaying solar-active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron-density maps formed using Si x (356.03 angstrom/347.41 angstrom) show that the density varies from similar to 10(10) cm(-3) in the active-region core to similar to 7 x 108 cm-3 at the region boundaries. Over the 5 d of observations, the average electron density fell by similar to 30 per cent. Temperature maps formed using Fe XVI (335.41 angstrom)/Fe XIV (334.18 angstrom) show electron temperatures of similar to 2.34 x 10(6) K in the active-region core and similar to 2.10 x 10(6) K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the 5-d period. The radiative, conductive and mass-flow losses were calculated and used to determine the resultant heating rate (P-H). Radiative losses were found to dominate the active-region cooling process. As the region decayed, the heating rate decreased by almost a factor of 5 between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi(tot) = integral dA vertical bar B-z vertical bar), yielding a power law of the form P-H similar to Phi(0.81 +/- 0.32)(tot) This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.
Resumo:
The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.
Resumo:
Aims: On 13 June 1998, the TRACE satellite was fortuitously well placed to observe the effects of a flare-induced EIT wave in the corona, and its subsequent interaction with coronal magnetic loops. In this study, we use these TRACE observations to corroborate previous theoretical work, which determined the response of a coronal loop to a harmonic driver in the context of ideal magnetohydrodynamics, as well as estimate the magnetic field strength and the degree of longitudinal inhomogeneity. Methods: Loop edges are tracked, both spatially and temporally, using wavelet modulus maxima algorithms, with corresponding loop displacements from its quiescent state analysed by fitting scaled sinusoidal functions. The physical parameters of the coronal loop are subsequently determined using seismological techniques. Results: The studied coronal loop is found to oscillate with two distinct periods, 501 ± 5 s and 274 ± 7 s, which could be interpreted as belonging to the fundamental kink mode and first harmonic, or could reflect the stage of an overdriven loop. Additional scenarios for explaining the two periods are listed, each resulting in a different value of the magnetic field and the intrinsic and sub-resolution properties of the coronal loop. When assuming the periods belong to the fundamental kink mode and its first harmonic, we obtain a magnetic field strength inside the oscillating coronal loop of 2.0 ± 0.7 G. In contrast, interpreting the oscillations as a combination of the loop's natural kink frequency and a harmonic EIT wave provides a magnetic field strength of 5.8 ± 1.5 G. Using the ratio of the two periods, we find that the gravitational scale height in the loop is 73 ± 3 Mm. Conclusions: We show that the observation of two distinct periods in a coronal loop does not necessarily lead to a unique conclusion. Multiple plausible scenarios exist, suggesting that both the derived strength of the magnetic field and the sub-resolution properties of the coronal loop depend entirely on which interpretation is chosen. The interpretation of the observations in terms of a combination of the natural kink mode of the coronal loop, driven by a harmonic EIT wave seems to result in values of the magnetic field consistent with previous findings. Other interpretations, which are realistic, such as kink fundamental mode/first harmonic and the oscillations of two sub-resolution threads result in magnetic field strengths that are below the average values found before.