3 resultados para Dynamic spectrum access


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors propose simple methods to evaluate the achievable rates and outage probability of a cognitive radio (CR) link that takes into account the imperfectness of spectrum sensing. In the considered system, the CR transmitter and receiver correlatively sense and dynamically exploit the spectrum pool via dynamic frequency hopping. Under imperfect spectrum sensing, false-alarm and miss-detection occur which cause impulsive interference emerged from collisions due to the simultaneous spectrum access of primary and cognitive users. That makes it very challenging to evaluate the achievable rates. By first examining the static link where the channel is assumed to be constant over time, they show that the achievable rate using a Gaussian input can be calculated accurately through a simple series representation. In the second part of this study, they extend the calculation of the achievable rate to wireless fading environments. To take into account the effect of fading, they introduce a piece-wise linear curve fitting-based method to approximate the instantaneous achievable rate curve as a combination of linear segments. It is then demonstrated that the ergodic achievable rate in fast fading and the outage probability in slow fading can be calculated to achieve any given accuracy level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose three relay selection schemes for full-duplex heterogeneous networks in the presence of multiple cognitive radio eavesdroppers. In this setup, the cognitive small-cell nodes (secondary network) can share the spectrum licensed to the macro-cell system (primary network) on the condition that the quality-of-service of the primary network is always satisfied subjected to its outage probability constraint. The messages are delivered from one small-cell base station to the destination with the help of full-duplex small-cell base stations, which act as relay nodes. Based on the availability of the network’s channel state information at the secondary information source, three different selection criteria for full-duplex relays, namely: 1) partial relay selection; 2) optimal relay selection; and 3) minimal self-interference relay selection, are proposed. We derive the exact closed-form and asymptotic expressions of the secrecy outage probability for the three criteria under the attack of non-colluding/colluding eavesdroppers. We demonstrate that the optimal relay selection scheme outperforms the partial relay selection and minimal self-interference relay selection schemes at the expense of acquiring full channel state information knowledge. In addition, increasing the number of the full-duplex small-cell base stations can improve the security performance. At the illegitimate side, deploying colluding eavesdroppers and increasing the number of eavesdroppers put the confidential information at a greater risk. Besides, the transmit power and the desire outage probability of the primary network have great influences on the secrecy outage probability of the secondary network. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the secrecy outage performance of spectrum sharing multiple-input multiple-output networks using generalized transmit antenna selection with maximal ratio combining over Nakagami-m channels. In particular, the outdated channel state information is considered at the process of antenna selection due to feedback delay. Considering a practical passive eavesdropper scenario, we derive the exact and asymptotic closed-form expressions of secrecy outage probability, which enable us to evaluate the secrecy performance with high efficiency and present a new design insight into the impact of key parameters on the secrecy performance. In addition, the analytical results demonstrate that the achievable secrecy diversity order is only determined by the parameters of the secondary network, while other parameters related to primary or eavesdropper’s channels have a significantly impact on the secrecy coding gain.