2 resultados para Dynamic behaviour
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.
Resumo:
Android is becoming ubiquitous and currently has the largest share of the mobile OS market with billions of application downloads from the official app market. It has also become the platform most targeted by mobile malware that are becoming more sophisticated to evade state-of-the-art detection approaches. Many Android malware families employ obfuscation techniques in order to avoid detection and this may defeat static analysis based approaches. Dynamic analysis on the other hand may be used to overcome this limitation. Hence in this paper we propose DynaLog, a dynamic analysis based framework for characterizing Android applications. The framework provides the capability to analyse the behaviour of applications based on an extensive number of dynamic features. It provides an automated platform for mass analysis and characterization of apps that is useful for quickly identifying and isolating malicious applications. The DynaLog framework leverages existing open source tools to extract and log high level behaviours, API calls, and critical events that can be used to explore the characteristics of an application, thus providing an extensible dynamic analysis platform for detecting Android malware. DynaLog is evaluated using real malware samples and clean applications demonstrating its capabilities for effective analysis and detection of malicious applications.