5 resultados para Driving impairment
Resumo:
RATIONALE: As more preterm infants recover from severe bronchopulmonary dysplasia (BPD), it is critical to understand the clinical consequences of this condition on the lung health of adult survivors.
OBJECTIVES: To assess structural and functional lung parameters in young adult BPD survivors and preterm and term controls Methods: Young adult survivors of BPD (mean age 24) underwent spirometry, lung volumes, transfer factor, lung clearance index and fractional exhaled nitric oxide measurements together with high-resolution chest tomographic (CT) imaging and cardiopulmonary exercise testing.
MEASUREMENTS AND MAIN RESULTS: 25 adult BPD survivors, (mean ± SD gestational age 26.8 ± 2.3 weeks; birth weight 866 ± 255 g), 24 adult prematurely born non-BPD controls (gestational age 30.6 ± 1.9 weeks; birth weight 1234 ± 207 g) and 25 adult term birth control subjects (gestational age 38.5 ± 0.9 weeks; and birth weight 3569 ± 2979 g) were studied. BPD subjects were more likely to be wakened by cough (OR 9.7, 95% CI: 1.8 to 52.6), p<0.01), wheeze and breathlessness (OR 12.2, 95%CI: 1.3 to 112), p<0.05) than term controls after adjusting for sex and current smoking. Preterm subjects had greater airways obstruction than term subjects. BPD subjects had significantly lower values for FEV1 and FEF25-75 (% predicted and z scores) than term controls (both p<0.001). Although non-BPD subjects also had lower spirometric values than term controls, none of the differences reached statistical significance. More BPD subjects (25%) had fixed airflow obstruction than non-BPD (12.5%) and term (0%) subjects (p=0.004). Both BPD and non-BPD subjects had significantly greater impairment in gas transfer (KCO % predicted) than term subjects (both p<0.05). Eighteen (37%) preterm participants were classified as small for gestational age (birth weight < 10th percentile for gestational age). These subjects had significantly greater impairment in FEV1 (% predicted and z scores) than those born appropriate for gestational age. BPD survivors had significantly more severe radiographic structural lung impairment than non-BPD subjects. Both preterm groups had impaired exercise capacity compared to term controls. There was a trend for greater limitation and leg discomfort in BPD survivors.
CONCLUSIONS: Adult preterm birth survivors, especially those who developed BPD, continue to experience respiratory symptoms and exhibit clinically important levels of pulmonary impairment.
Resumo:
Vascular cognitive impairment (VCI), including its severe form, vascular dementia (VaD), is the second most common form of dementia. The genetic etiology of sporadic VCI remains largely unknown. We previously conducted a systematic review and meta-analysis of all published genetic association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ɛ4, ɛ2) and MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was conducted in a new independent relatively large collaborative European cohort of VaD (nmax = 549) and elderly non-demented samples (nmax = 552). Where available, genotype data derived from Illumina's 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR = 1.36, 95% CI 1.16-1.58, p = <0.0001), APOE rs7412 (OR = 0.62, 95% CI 0.42-0.90, p = 0.01), and APOE rs429358 (OR = 1.59, 95% CI 1.17-2.16, p = 0.003). Association was also observed with APOE epsilon alleles; ɛ4 (OR = 1.85, 95% CI 1.35-2.52, p = <0.0001) and ɛ2 (OR = 0.67, 95% CI 0.46-0.98, p = 0.03). Logistic Regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, age, and population maintained the association of APOE rs429358 and ɛ4 allele.
Resumo:
We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in XUV-initiated high-harmonic generation in neon. By probing the atom with a low energy (below the 2s ionisation threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.
Resumo:
Background
Studies suggest a complex relationship between Cerebral Palsy sub-types, severity of impairment, and risk factors such as gestational age. To investigate these relationships, we conducted analyses on over 1,100 children included in the Northern Ireland Cerebral Palsy Register (NICPR) whose clinical CP subtype was Bilateral Spastic or Spastic Hemiplegia, and for whom information was available on the relevant variables.
Methods
We tested for the association between Bilateral and Hemiplegia subtypes, severe intellectual impairment, and gestational age (term; moderately preterm; very or extremely preterm) while controlling for gender, socio-economic deprivation, year of birth, and birth weight (using a standardized birth-weight score based on deviance from the birth weight average within each gestational age band). Severity of intellectual impairment was dichotomised (severe intellectual delay vs. moderate or no delay).
Results
Logistic regressions indicated a good fit of the model, and the predictors included explained approximately 19% of variability in the outcome. The results indicated a strong association between the Bilateral subtype and severe intellectual impairment: compared to children with the Hemiplegia subtype, those with Bilateral Spastic CP displayed a 10-fold increase in the odds of severe intellectual impairment. The results revealed a significant interaction between CP subtype and gestational age: for the Bilateral CP subtype, being born at term was associated with increased probability of severe intellectual impairment.
Discussion
Results are consistent with other studies (Hemming et al., 2008) in indicating that the likelihood of cognitive impairments increases with increasing gestational age at delivery of Bilateral Spastic CP children. The results are discussed in light of hypotheses that suggest the brain might be able to reorganise and compensate the effects of lesions and injuries when it is still less developed.
Non-pharmacological interventions for cognitive impairment due to systemic cancer treatment (Review)
Resumo:
Background
It is estimated that up to 75% of cancer survivors may experience cognitive impairment as a result of cancer treatment and given the increasing size of the cancer survivor population, the number of affected people is set to rise considerably in coming years. There is a need, therefore, to identify effective, non-pharmacological interventions for maintaining cognitive function or ameliorating cognitive impairment among people with a previous cancer diagnosis.
Objectives
To evaluate the cognitive effects, non-cognitive effects, duration and safety of non-pharmacological interventions among cancer patients targeted at maintaining cognitive function or ameliorating cognitive impairment as a result of cancer or receipt of systemic cancer treatment (i.e. chemotherapy or hormonal therapies in isolation or combination with other treatments).
Search methods
We searched the Cochrane Centre Register of Controlled Trials (CENTRAL), MEDLINE, Embase, PUBMED, Cumulative Index of Nursing and Allied Health Literature (CINAHL) and PsycINFO databases. We also searched registries of ongoing trials and grey literature including theses, dissertations and conference proceedings. Searches were conducted for articles published from 1980 to 29 September 2015.
Selection criteria
Randomised controlled trials (RCTs) of non-pharmacological interventions to improve cognitive impairment or to maintain cognitive functioning among survivors of adult-onset cancers who have completed systemic cancer therapy (in isolation or combination with other treatments) were eligible. Studies among individuals continuing to receive hormonal therapy were included. We excluded interventions targeted at cancer survivors with central nervous system (CNS) tumours or metastases, non-melanoma skin cancer or those who had received cranial radiation or, were from nursing or care home settings. Language restrictions were not applied.
Data collection and analysis
Author pairs independently screened, selected, extracted data and rated the risk of bias of studies. We were unable to conduct planned meta-analyses due to heterogeneity in the type of interventions and outcomes, with the exception of compensatory strategy training interventions for which we pooled data for mental and physical well-being outcomes. We report a narrative synthesis of intervention effectiveness for other outcomes.
Main results
Five RCTs describing six interventions (comprising a total of 235 participants) met the eligibility criteria for the review. Two trials of computer-assisted cognitive training interventions (n = 100), two of compensatory strategy training interventions (n = 95), one of meditation (n = 47) and one of physical activity intervention (n = 19) were identified. Each study focused on breast cancer survivors. All five studies were rated as having a high risk of bias. Data for our primary outcome of interest, cognitive function were not amenable to being pooled statistically. Cognitive training demonstrated beneficial effects on objectively assessed cognitive function (including processing speed, executive functions, cognitive flexibility, language, delayed- and immediate- memory), subjectively reported cognitive function and mental well-being. Compensatory strategy training demonstrated improvements on objectively assessed delayed-, immediate- and verbal-memory, self-reported cognitive function and spiritual quality of life (QoL). The meta-analyses of two RCTs (95 participants) did not show a beneficial effect from compensatory strategy training on physical well-being immediately (standardised mean difference (SMD) 0.12, 95% confidence interval (CI) -0.59 to 0.83; I2= 67%) or two months post-intervention (SMD - 0.21, 95% CI -0.89 to 0.47; I2 = 63%) or on mental well-being two months post-intervention (SMD -0.38, 95% CI -1.10 to 0.34; I2 = 67%). Lower mental well-being immediately post-intervention appeared to be observed in patients who received compensatory strategy training compared to wait-list controls (SMD -0.57, 95% CI -0.98 to -0.16; I2 = 0%). We assessed the assembled studies using GRADE for physical and mental health outcomes and this evidence was rated to be low quality and, therefore findings should be interpreted with caution. Evidence for physical activity and meditation interventions on cognitive outcomes is unclear.
Authors' conclusions
Overall, the, albeit low-quality evidence may be interpreted to suggest that non-pharmacological interventions may have the potential to reduce the risk of, or ameliorate, cognitive impairment following systemic cancer treatment. Larger, multi-site studies including an appropriate, active attentional control group, as well as consideration of functional outcomes (e.g. activities of daily living) are required in order to come to firmer conclusions about the benefits or otherwise of this intervention approach. There is also a need to conduct research into cognitive impairment among cancer patient groups other than women with breast cancer.