2 resultados para Drag-Queens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The popularity of Computing degrees in the UK has been increasing significantly over the past number of years. In Northern Ireland, from 2007 to 2015, there has been a 40% increase in acceptances to Computer Science degrees with England seeing a 60% increase over the same period (UCAS, 2016). However, this is tainted as Computer Science degrees also continue to maintain the highest dropout rates.
In Queen’s University Belfast we currently have a Level 1 intake of over 400 students across a number of computing pathways. Our drive as staff is to empower and motivate the students to fully engage with the course content. All students take a Java programming module the aim of which is to provide an understanding of the basic principles of object-oriented design. In order to assess these skills, we have developed Jigsaw Java as an innovative assessment tool offering intelligent, semi-supervised automated marking of code.
Jigsaw Java allows students to answer programming questions using a drag-and-drop interface to place code fragments into position. Their answer is compared to the sample solution and if it matches, marks are allocated accordingly. However, if a match is not found then the corresponding code is executed using sample data to determine if its logic is acceptable. If it is, the solution is flagged to be checked by staff and if satisfactory is saved as an alternative solution. This means that appropriate marks can be allocated and should another student have submitted the same placement of code fragments this does not need to be executed or checked again. Rather the system now knows how to assess it.
Jigsaw Java is also able to consider partial marks dependent on code placement and will “learn” over time. Given the number of students, Jigsaw Java will improve the consistency and timeliness of marking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring