18 resultados para Dover


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the characterization of the specular reflection of 50 fs laser pulses in the intensity range 10(17)-10(21)Wcm(-2) obliquely incident with p-polarization onto solid density plasmas. These measurements show that the absorbed energy fraction remains approximately constant and that second harmonic generation (SHG) achieves efficiencies of 22 +/- 8% for intensities approaching 10(21)Wcm(-2). A simple model based on the relativistic oscillating mirror concept reproduces the observed intensity scaling, indicating that this is the dominant process involved for these conditions. This method may prove to be superior to SHG by sum frequency mixing in crystals as it is free from dispersion and retains high spatial coherence at high intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (1021W/cm2) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability. © 2012 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurements reported here provide scaling laws for the ion acceleration process in the regime of ultrashort (50 fs), ultrahigh contrast (10) and ultrahigh intensity (> 10W/cm ), never investigated previously. The scaling of the accelerated ion energies was studied by varying a number of parameters such as target thickness (down to 10nm), target material (C and Al) and laser light polar- ization (circular and linear) at 35° and normal laser incidence. A twofold increase in proton energy and an order of magnitude enhancement in ion flux have been observed over the investigated thickness range at 35° angle of incidence. Further- more, at normal laser incidence, measured peak proton energies of about 20 MeV are observed almost independently of the target thickness over a wide range (50nm- 10 µm). 1. © 2012 by Società Italiana di Fisica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collimation of proton beams accelerated during ultra-intense laser irradiation of thin aluminum foils was measured experimentally whilst varying laser contrast. Increasing the laser contrast using a double plasma mirror system resulted in a marked decrease in proton beam divergence (20° to <10°), and the enhanced collimation persisted over a wide range of target thicknesses (50 nm–6 µm), with an increased flux towards thinner targets. Supported by numerical simulation, the larger beam divergence at low contrast is attributed to the presence of a significant plasma scale length on the target front surface. This alters the fast electron generation and injection into the target, affecting the resultant sheath distribution and dynamics at the rear target surface. This result demonstrates that careful control of the laser contrast will be important for future laser-driven ion applications in which control of beam divergence is crucial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategies for mitigation of seafloor massive sulphide (SMS) extraction in the deep sea include establishment of suitable reference sites that allow for studies of natural environmental variability and that can serve as sources of larvae for re-colonisation of extracted hydrothermal fields. In this study, we characterize deep-sea vent communities in Manus Basin (Bismarck Sea, Papua New Guinea) and use macrofaunal data sets from a proposed reference site (South Su) and a proposed mine site (Solwara 1) to test the hypothesis that there was no difference in macrofaunal community structure between the sites. We used dispersion weighting to adjust taxa-abundance matrices to down-weight the contribution of contagious distributions of numerically abundant taxa. Faunal assemblages of 3 habitat types defined by biogenic taxa (2 provannid snails, Alviniconcha spp. and Ifremeria nautilei; and a sessile barnacle, Eochionelasmus ohtai) were distinct from one another and from the vent peripheral assemblage, but were not differentiable from mound-to-mound within a site or between sites. Mussel and tubeworm populations at South Su but not at Solwara 1 enhance the taxonomic and habitat diversity of the proposed reference site. © Inter-Research 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectrally-peaked proton beams of high charge (Ep ≈ 8 MeV, ΔE ≈ 4 MeV, N ≈ 50 nC ) have been observed from the interaction of an intense laser (>1019Wcm-2) with ultrathinCHfoils, as measured by spectrally-resolved full beam profiles. These beams are reproducibly generated for foil thicknesses 5-100 nm, and exhibit narrowing divergence with decreasing target thickness down to ≈8° for 5 nm. Simulations demonstrate that the narrow energy spread feature is a result of buffered acceleration of protons. The radiation pressure at the front of the target results in asymmetric sheath fields which permeate throughout the target, causing preferential forward acceleration. Due to their higher chargeto-mass ratio, the protons outrun a carbon plasma driven in the relativistic transparency regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.