18 resultados para Digital Video
Resumo:
This paper describes how worst-case error analysis can be applied to solve some of the practical issues in the development and implementation of a low power, high performance radix-4 FFT chip for digital video applications. The chip has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W, leading to a cost-effective silicon solution for high quality video processing applications. The analysis focuses on the effect that different radix-4 architectural configurations and finite wordlengths has on the FFT output dynamic range. These issues are addressed using both mathematical error models and through extensive simulation.
Resumo:
The aim of this study was to explore the impact of interaction (through gathering local field data and engaging in remote reciprocal presentations) on aspects of multicultural awareness. Sixty-six 11-12-year-old Scottish primary school pupils collected data in the field from their local community through questionnaires, interviews, direct observation, digital images and video. From this they distilled a multimedia presentation, delivered by videoconference to a partner school in the USA, who reciprocated. There was some evidence of pre-post project gains in the complexity of the children's perceptions of their community environment, the ethnicity of their community, their own ethnicity, and news images. The children's use of language to define ethnicity also became more complex and their attitudes toward ethnic minorities became more inclusive. The implications for practice, policy and future research were explored. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The technical challenges in the design and programming of signal processors for multimedia communication are discussed. The development of terminal equipment to meet such demand presents a significant technical challenge, considering that it is highly desirable that the equipment be cost effective, power efficient, versatile, and extensible for future upgrades. The main challenges in the design and programming of signal processors for multimedia communication are, general-purpose signal processor design, application-specific signal processor design, operating systems and programming support and application programming. The size of FFT is programmable so that it can be used for various OFDM-based communication systems, such as digital audio broadcasting (DAB), digital video broadcasting-terrestrial (DVB-T) and digital video broadcasting-handheld (DVB-H). The clustered architecture design and distributed ping-pong register files in the PAC DSP raise new challenges of code generation.
Resumo:
A Digital Video Broadcast Terrestrial (DVB-T) based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. This paper will describe the challenges involved in designing an antenna array with a bandwidth of 450 MHz. It will discuss the design procedure and demonstrate a number of simulated array configurations. The final configuration of the array will be shown as well as simulations of the expected performance over the desired frequency span.
Resumo:
The use of radars in detecting low flying, small targets is being explored for several decades now. However radar with counter-stealth abilities namely the passive, multistatic, low frequency radars are in the focus recently. Passive radar that uses Digital Video Broadcast Terrestrial (DVB-T) signals as illuminator of opportunity is a major contender in this area. A DVB-T based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. At Fraunhofer FHR, there is currently a need for an array antenna to be designed for operation over the 450-900 MHz range with wideband beamforming and null steering capabilities. This would add to the ability of the passive radar in detecting covert targets and would improve the performance of the system. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. Such an array would have an increased flexibility of operation in different environment or locations.
The design of such an array antenna and the applied techniques for wideband beamforming and null steering are presented in the thesis. The interaction between the inter-element spacing, the grating lobes and the mutual couplings had to be carefully studied and an optimal solution was to be reached at that meets all the specifications of the antenna array for wideband applications. Directional beams, nulls along interference directions, low sidelobe levels, polarization aspects and operation along a wide bandwidth of 450-900 MHz were some of the key considerations.
Resumo:
Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.
Resumo:
Face-to-face interviews are a fundamental research tool in qualitative research. Whilst this form of data collection can provide many valuable insights, it can often fall short of providing a complete picture of a research subject's experiences. Point of view (PoV) interviewing is an elicitation technique used in the social sciences as a means of enriching data obtained from research interviews. Recording research subjects' first person perspectives, for example by wearing digital video glasses, can afford deeper insights into their experiences. PoV interviewing can promote making visible the unverbalizable and does not rely as much on memory as the traditional interview. The use of such relatively inexpensive technology is gaining interest in health profession educational research and pedagogy, such as dynamic simulation-based learning and research activities. In this interview, Dr Gerry Gormley (a medical education researcher) talks to Dr Jonathan Skinner (an anthropologist with an interest in PoV interviewing), exploring some of the many crossover implications with PoV interviewing for medical education research and practice.
Resumo:
Background
Medical students transitioning into professional practice feel underprepared to deal with the emotional complexities of real-life ethical situations. Simulation-based learning (SBL) may provide a safe environment for students to probe the boundaries of ethical encounters. Published studies of ethics simulation have not generated sufficiently deep accounts of student experience to inform pedagogy. The aim of this study was to understand students’ lived experiences as they engaged with the emotional challenges of managing clinical ethical dilemmas within a SBL environment.
Methods
This qualitative study was underpinned by an interpretivist epistemology. Eight senior medical students participated in an interprofessional ward-based SBL activity incorporating a series of ethically challenging encounters. Each student wore digital video glasses to capture point-of-view (PoV) film footage. Students were interviewed immediately after the simulation and the PoV footage played back to them. Interviews were transcribed verbatim. An interpretative phenomenological approach, using an established template analysis approach, was used to iteratively analyse the data.
Results
Four main themes emerged from the analysis: (1) ‘Authentic on all levels?’, (2)‘Letting the emotions flow’, (3) ‘Ethical alarm bells’ and (4) ‘Voices of children and ghosts’. Students recognised many explicit ethical dilemmas during the SBL activity but had difficulty navigating more subtle ethical and professional boundaries. In emotionally complex situations, instances of moral compromise were observed (such as telling an untruth). Some participants felt unable to raise concerns or challenge unethical behaviour within the scenarios due to prior negative undergraduate experiences.
Conclusions
This study provided deep insights into medical students’ immersive and embodied experiences of ethical reasoning during an authentic SBL activity. By layering on the human dimensions of ethical decision-making, students can understand their personal responses to emotion, complexity and interprofessional working. This could assist them in framing and observing appropriate ethical and professional boundaries and help smooth the transition into clinical practice.
Resumo:
In this article, we discuss our experiences of using photography and video while observing contentious parades and protests in Belfast. We show how our use of these methods drew us into a series of unplanned for non-verbal interactions with other event participants who were also freely and abundantly using photographic and filming equipment to capture their own images. This interactive use of photography and video affected us emotionally and influenced what we noticed and what we omitted in our observations. In particular, it forced us to reflect upon and question our role as researchers in the events we observed and in the changing balance of power between researchers and researched.
Resumo:
A new domain-specific, reconfigurable system-on-a-chip (SoC) architecture is proposed for video motion estimation. This has been designed to cover most of the common block-based video coding standards, including MPEG-2, MPEG-4, H.264, WMV-9 and AVS. The architecture exhibits simple control, high throughput and relatively low hardware cost when compared with existing circuits. It can also easily handle flexible search ranges without any increase in silicon area and can be configured prior to the start of the motion estimation process for a specific standard. The computational rates achieved make the circuit suitable for high-end video processing applications, such as HDTV. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards. Indeed, the cost/performance achieved exceeds that of existing but specific solutions and greatly exceeds that of general purpose field programmable gate array (FPGA) designs.
Resumo:
With a significant increment of the number of digital cameras used for various purposes, there is a demanding call for advanced video analysis techniques that can be used to systematically interpret and understand the semantics of video contents, which have been recorded in security surveillance, intelligent transportation, health care, video retrieving and summarization. Understanding and interpreting human behaviours based on video analysis have observed competitive challenges due to non-rigid human motion, self and mutual occlusions, and changes of lighting conditions. To solve these problems, advanced image and signal processing technologies such as neural network, fuzzy logic, probabilistic estimation theory and statistical learning have been overwhelmingly investigated.
Resumo:
Details of a new low power fast Fourier transform (FFT) processor for use in digital television applications are presented. This has been fabricated using a 0.6-µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8 × 8 mm and dissipates 1 W. The chip design is based on a novel VLSI architecture which has been derived from a first principles factorization of the discrete Fourier transform (DFT) matrix and tailored to a direct silicon implementation.