516 resultados para Diabetes - Retinal lesions
Resumo:
Abstract
AIMS/HYPOTHESIS:
Retinal vascular calibre changes may reflect early subclinical microvascular disease in diabetes. Because of the considerable homology between retinal and cerebral microcirculation, we examined whether retinal vascular calibre, as a proxy of cerebral microvascular disease, was associated with cognitive function in older people with type 2 diabetes.
METHODS:
A cross-sectional analysis of 954 people aged 60-75 years with type 2 diabetes from the population-based Edinburgh Type 2 Diabetes Study was performed. Participants underwent standard seven-field binocular digital retinal photography and a battery of seven cognitive function tests. The Mill Hill Vocabulary Scale was used to estimate pre-morbid cognitive ability. Retinal vascular calibre was measured from an image field with the optic disc in the centre using a validated computer-based program.
RESULTS:
After age and sex adjustment, larger retinal arteriolar and venular calibres were significantly associated with lower scores for the Wechsler Logical Memory test, with standardised regression coefficients -0.119 and -0.084, respectively (p?<?0.01), but not with other cognitive tests. There was a significant interaction between sex and retinal vascular calibre for logical memory. In male participants, the association of increased retinal arteriolar calibre with logical memory persisted (p?<?0.05) when further adjusted for vocabulary, venular calibre, depression, cardiovascular risk factors and macrovascular disease. In female participants, this association was weaker and not significant.
CONCLUSIONS/INTERPRETATION:
Retinal arteriolar dilatation was associated with poorer memory, independent of estimated prior cognitive ability in older men with type 2 diabetes. The sex interaction with stronger findings in men requires confirmation. Nevertheless, these data suggest that impaired cerebral arteriolar autoregulation in smooth muscle cells, leading to arteriolar dilatation, may be a possible pathogenic mechanism in verbal declarative memory decrements in people with diabetes.
Resumo:
PURPOSE:
To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation.
METHODS:
A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts.
RESULTS:
Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-a, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice.
CONCLUSIONS:
Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.
Resumo:
Purpose: To investigate the adverse effect of intravitreal injection of normal saline (NS) and phosphate buffered saline (PBS) in mouse eyes.
Methods: NS or PBS was injected intravitreally into C57BL/6J mouse eyes. Retinal lesions were monitored by fundus imaging, spectral-domain optical coherence tomography (SD-OCT), and histological investigations. Retinal immune gene expression was determined by real-time polymerase chain reaction (PCR). The toxic effect of NS and PBS or retinal protein from NS- or PBS-injected eyes on retinal pigment epithelium (RPE) was tested in B6-RPE-07 mouse RPE cell cultures.
Results: Intravitreal injection of NS dose-dependently induced localized retinal lesion in mice. Histological investigations revealed multiple vacuoles in photoreceptor outer segments and RPE cells. The lesions recovered over time and by 3 weeks post injection the majority of lesions vanished in eyes receiving 1 μl NS. Inflammatory genes, including TNF-α, IL-1β, IL-6, iNOS, and VEGF were upregulated in NS injected eyes. Intravitreal injection of PBS did not cause any pathology. The treatment of B6-RPE07 cells with 30% PBS or 30% NS did not affect RPE viability. However, incubation of 1-μg/ml retinal protein from NS-injected eyes, but not PBS-injected eyes induced RPE cell death.
Conclusion: NS is toxic to the C57BL/6J mouse retina and should not be used as a vehicle for intraocular injection. PBS is not toxic to the retina and is a preferred vehicle.
Translational Relevance: NS is not a physiological solution for intraocular injection in the C57BL/6J mice and questions its suitability for intraocular injection in other species, including human.
Resumo:
Purpose: The canonical Wnt signaling is activated by retinal injury. Under disease conditions, the Wnt mediates inflammatory responses. Inflammation has been detected in age-related macular degeneration (AMD) retinas and Ccl2-/-/Cx3cr1-/- (DKO) mice with or without rd8 background, a model with progressive AMD-like lesions including focal photoreceptor/RPE degeneration and A2E accumulation. We evaluated the effects of Wnt-β-catenin activation and an antibody against LRP6, the co-receptor of Wnt on these two models.
Methods: anti-LRP6 antibody (2F1, 1 μl of 5 μg/μL) was intravitreally injected into the right eyes in 3 separate experiments (DKOrd8, N=35; DKO, N=10). The left eyes were injected with mouse IgG as controls. Fundoscopy was taken before injection and sequentially monthly after injection. Two months after injection, light-adapted ERG responses were recorded; then the eyes were harvested for histopathology, the determination of retinal A2E, and molecular analysis. The microarray of ocular mRNA of 92 Wnt genes was compared between the treated and the control eyes. The phosphorylated types of LRP6 and β-catenin and endogenous forms of the proteins were assayed by Western blotting.
Results: For DKOrd8 mice, the fundus showed a slower progression or alleviation of retinal lesions in the right eyes as compared to the left eyes. Among 35 pairs of eyes, 26 (74.3%) were improved, 7 (20%) stayed the same and 2 (5.7%) remained progressing. Histology confirmed the clinical observation. Light-adapted ERG of the treated eyes exhibited larger amplitudes compared to control eyes (n=6), with greater improvements under UV light stimulus. There was a significantly lower A2E in the treated eyes compared to controls. Microarray of 92 Wnt genes expression pattern was similar in both eyes. Western blotting indicated local administration of 2F1 antibody to suppress the activation of Wnt pathway in the retina. For DKO mice, the treatment improved ERG but less effect on RPE degeneration.
Conclusions: The canonical Wnt signaling plays a role in the focal retina lesion of both DKOrd8 and DKO mice; and intravitreal anti-LRP6 antibody might be neuroprotective via deactivation of canonical Wnt pathway.
Resumo:
BACKGROUND: In experimental models of retinopathy of prematurity (ROP), a vasoproliferative disorder of the retina, retinal lesions are usually assessed by morphological examination. However, studies suggest that the polyamine system may be useful in monitoring proliferation processes. For this reason, polyamine concentrations in rat erythrocytes (RBC) and the regulation of polyamine system in rat eyes under the conditions relevant to ROP were investigated. METHODS: Newborn Wistar rats were reared in room air (control) or exposed first to hyperoxia (60% or 80% oxygen, 2 weeks) and then to normoxia (relative hypoxia, 1 or 2 weeks). Blood was collected from orbital vessels at 2 weeks of age and before death. Polyamine system-related enzyme activities were measured in retina and lens with radioassays. Polyamines were quantified by fluorometry after extraction, dansylation and HPLC separation. RESULTS: Oxygen (80% only) significantly decreased RBC polyamine concentrations, which then markedly increased after rats were transferred for a week to normal air, suggesting retardation of growth processes and compensatory stimulation, respectively. However, polyamine system changes in the rat eye were not so pronounced. Enzyme activities and polyamine concentrations tended to be lower in retina after hyperoxia and were only slightly higher, with the exception of ornithine decarboxylase, after a subsequent 1 week of normoxia. In litters subjected to normoxia for longer periods no changes were found. CONCLUSION: The transient and short-lived alteration in polyamine metabolism, especially in the eye, suggests that exposure of newborn rats to high oxygen supplementation followed by normoxia does not necessarily result in marked retinopathy.
Resumo:
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Resumo:
BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly.
METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD.
RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas.
CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.
Resumo:
OBJECTIVES: To compare the ability of ophthalmologists versus optometrists to correctly classify retinal lesions due to neovascular age-related macular degeneration (nAMD).
DESIGN: Randomised balanced incomplete block trial. Optometrists in the community and ophthalmologists in the Hospital Eye Service classified lesions from vignettes comprising clinical information, colour fundus photographs and optical coherence tomographic images. Participants' classifications were validated against experts' classifications (reference standard).
SETTING: Internet-based application.
PARTICIPANTS: Ophthalmologists with experience in the age-related macular degeneration service; fully qualified optometrists not participating in nAMD shared care.
INTERVENTIONS: The trial emulated a conventional trial comparing optometrists' and ophthalmologists' decision-making, but vignettes, not patients, were assessed. Therefore, there were no interventions and the trial was virtual. Participants received training before assessing vignettes.
MAIN OUTCOME MEASURES: Primary outcome-correct classification of the activity status of a lesion based on a vignette, compared with a reference standard. Secondary outcomes-potentially sight-threatening errors, judgements about specific lesion components and participants' confidence in their decisions.
RESULTS: In total, 155 participants registered for the trial; 96 (48 in each group) completed all assessments and formed the analysis population. Optometrists and ophthalmologists achieved 1702/2016 (84.4%) and 1722/2016 (85.4%) correct classifications, respectively (OR 0.91, 95% CI 0.66 to 1.25; p=0.543). Optometrists' decision-making was non-inferior to ophthalmologists' with respect to the prespecified limit of 10% absolute difference (0.298 on the odds scale). Optometrists and ophthalmologists made similar numbers of sight-threatening errors (57/994 (5.7%) vs 62/994 (6.2%), OR 0.93, 95% CI 0.55 to 1.57; p=0.789). Ophthalmologists assessed lesion components as present less often than optometrists and were more confident about their classifications than optometrists.
CONCLUSIONS: Optometrists' ability to make nAMD retreatment decisions from vignettes is not inferior to ophthalmologists' ability. Shared care with optometrists monitoring quiescent nAMD lesions has the potential to reduce workload in hospitals.
TRIAL REGISTRATION NUMBER: ISRCTN07479761; pre-results registration.
Resumo:
PURPOSE. Diabetic patients who also have retinitis pigmentosa (RP) appear to have fewer and less severe retinal microvascular lesions. Diabetic retinopathy may be linked to increased inner retinal hypoxia, with the possibility that this is exacerbated by oxygen usage during the dark-adaptation response. Therefore, patients with RP with depleted rod photoreceptors may encounter proportionately less retinal hypoxia, and, when diabetes is also present, there may be fewer retinopathic lesions. This hypothesis was tested in rhodopsin knockout mice (Rho(-/-)) as an RP model in which the diabetic milieu is superimposed. The study was designed to investigate whether degeneration of the outer retina has any impact on hypoxia, to examine diabetes-related retinal gene expression responses, and to assess lesions of diabetic retinopathy.
Resumo:
Aims/hypothesis
The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy.
Methods
Diabetes was induced in wild-type (WT) and Rage −/− mice (also known as Ager −/− mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined.
Results
Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage −/− mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage −/− mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05–0.001). Rage −/− mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss.
Conclusions/interpretation Rage −/− in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.