49 resultados para Descente de gradient
Resumo:
We have previously published intermediate to hi,oh resolution spectroscopic observations of approximately 80 early B-type main-sequence stars situated in 19 Galactic open clusters/associations with Galactocentric distances distributed over 6 less than or equal to R-g less than or equal to 18 kpc. This current study collates and re-analyses these equivalent- width datasets using LTE and non-LTE model atmosphere techniques, in order to determine the stellar atmospheric parameters and abundance estimates for C, N, O, Mg, Al and Si. The latter should be representative of the present-day Galactic interstellar medium. Our extensive observational dataset permits the identification of sub-samples of stars with similar atmospheric parameters and of homogeneous subsets of lines. As such, this investigation represents the most extensive and systematic study of its kind to date. We conclude that the distribution of light elements (CI O, Mg & Si) in the Galactic disk can be represented by a linear, radial gradient of -0.07 +/- 0.01 dex kpc(-1) Our results for nitrogen and oxygen viz. (-0.09 +/- 0.01 dex kpc(-1) and -0.067 +/- 0.008 dex kpc(-1)) are in excellent agreement with that found from the study of HII regions. We have also examined our datasets for evidence of an abrupt discontinuity in the metallicity of the Galactic disk near a Galactocentric distance of 10 kpc (see Twarog et al. 1997). However, there is no evidence to suggest that our data would be better fitted with a two-zone model. Moreover, we observe a N/O gradient of -0.04 +/- 0.02 dex kpc(-1) which is consistent with that found for other spiral galaxies (Vila- Costas gr Edmunds 1993).
Resumo:
Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
Resumo:
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.
Resumo:
A family of stochastic gradient algorithms and their behaviour in the data echo cancellation work platform are presented. The cost function adaptation algorithms use an error exponent update strategy based on an absolute error mapping, which is updated at every iteration. The quadratic and nonquadratic cost functions are special cases of the new family. Several possible realisations are introduced using these approaches. The noisy error problem is discussed and the digital recursive filter estimator is proposed. The simulation outcomes confirm the effectiveness of the proposed family of algorithms.
Resumo:
Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.
Resumo:
The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.
Resumo:
Aims. The aim of this study is to examine if the well-known chemical gradient in TMC-1 is reflected in the amount of rudimentary forms of carbon available in the gas-phase. As a tracer we use the CH radical which is supposed to be well correlated with carbon atoms and simple hydrocarbon ions. Methods. We observed the 9-cm ?-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. Results. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0 × 10-8 , to the southeast where it reaches a value of 2.0 × 10-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~16–20. These values are clearly larger than what has been measured recently in diffuse interstellar gas and is likely to be related to C to CO conversion at higher densities. The good correlation between CH and OH can be explained by similar production and destruction pathways. We suggest that the observed CH and OH abundance gradients are mainly due to enhanced abundances in a low-density envelope which becomes more prominent in the southeastern part and seems to continue beyond the dense filament. Conclusions. An extensive envelope probably signifies an early stage of dynamical evolution, and conforms with the detection of a large CH abundance in the southeastern part of the cloud. The implied presence of other simple forms of carbon in the gas phase provides a natural explanation for the observation of “early-type” molecules in this region.