2 resultados para Data Archives
Resumo:
This paper synthesizes and discusses the spatial and temporal patterns of archaeological sites in Ireland, spanning the Neolithic period and the Bronze Age transition (4300–1900 cal BC), in order to explore the timing and implications of the main changes that occurred in the archaeological record of that period. Large amounts of new data are sourced from unpublished developer-led excavations and combined with national archives, published excavations and online databases. Bayesian radiocarbon models and context- and sample-sensitive summed radiocarbon probabilities are used to examine the dataset. The study captures the scale and timing of the initial expansion of Early Neolithic settlement and the ensuing attenuation of all such activity—an apparent boom-and-bust cycle. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. Contextualisation and spatial analysis of radiocarbon data reveals finer-scale patterning than is usually possible with summed-probability approaches: the boom-and-bust models of prehistoric populations may, in fact, be a misinterpretation of more subtle demographic changes occurring at the same time as cultural change and attendant differences in the archaeological record.
Resumo:
Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.