3 resultados para Darunavir ethanolate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Combination drug products can display thermal behaviour that is more complex than for the corresponding single drug products. For example, the contraceptive vaginal ring (VR) Nuvaring contains a eutectic (lowest melting) composition of etonogestrel (ETN) and ethinyl estradiol. Here we report the predisposition of dapivirine (DPV) to form reduced melting/eutectic mixtures when combined with other contraceptive hormones and antiretrovirals, and discuss the implications for development of combination microbicide and multipurpose prevention technology (MPT) products.
Methods: Binary mixtures of DPV with darunavir (DRV), levonorgestrel (LNG), ETN or maraviroc (MVC) were prepared either by physical mixing or by solvent evaporation. Selected binary mixtures were also incorporated into silicone elastomer (SE) VR devices. Thermal behavior of the mixtures was analyzed using differential scanning calorimetry (DSC) operating in standard heating ramp mode (10 °C/min). DSC data were used to construct two component phase diagrams for each binary system.
Results: Drug mixtures typically showed reduced melting transitions for both drug components, with clear evidence for a eutectic mixture at a well-defined intermediate composition. Eutectic temperatures and compositions for the various mixtures were: 40% DPV / 60% ETN - 170°C; 25% DPV / 75% MVC - 172°C; 65% DPV / 35% LNG - 192°C. In each case, the eutectic composition was also detected when the drug mixtures were incorporated into SE VRs. For the DPV/DRV system, the thermal behaviour is complicated by desolvation from the darunavir ethanolate polymorph.
Conclusions: When DPV is combined with small molecular weight hydrophobic drugs, the melting temperature for both drugs is typically reduced to a degree dependent on the composition of the mixture. At specified compositions, a low melting eutectic system results. The formation of eutectic behavior in binary drug systems needs to be carefully characterised in order to define product performance and drug release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Combination microbicide vaginal rings may be more effective than single microbicide rings at reducing/preventing sexual transmission of HIV. Here, we report the preclinical development and macaque pharmacokinetics of matrix-type silicone elastomer vaginal rings containing dapivirine and darunavir.

Methods: Macaque rings containing 25 mg dapivirine, 300 mg darunavir and 100 mg dapivirine, and 300 mg darunavir were manufactured and characterised by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28-day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values calculated.

Results: Darunavir caused a concentration-dependent reduction in the dapivirine melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present, and the release medium. In macaques, serum concentrations of both microbicides were maintained between 101–102 pg/mL. Vaginal fluid levels ranged between 103–104 ng/g and 104–105 ng/g for dapivirine and darunavir, respectively. Tissue concentrations ranges for each drug were: vagina (1.8×103–3.8×103 ng/g) > cervix (9.4×101–3.9×102 ng/g) > uterus (0–108 ng/g) > rectum (0–40 ng/g). Measured IC50 values were > 2 ng/mL for both compounds.

Conclusions: Based on these results, and in light of recent clinical progress of the 25mg dapivirine ring, a combination vaginal ring containing dapivirine and darunavir is a viable second-generation HIV microbicide candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Combination microbicide vaginal rings, containing two or more antiretrovirals targeting different steps in the HIV replicative process, may be more effective than single microbicide products at preventing sexual transmission of HIV. Here, we report the preclinical development, including in vitro release and macaque pharmacokinetics, of matrix-type silicone elastomer rings containing dapivirine (DPV; an experimental non-nucleoside reverse transcriptase inhibitor) and darunavir (DRV; a marketed protease inhibitor). Methods: Macaque rings containing 25 mg DPV, 300 mg DRV and 100 mg DPV, and 300 mg DRV were manufactured and characterised by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28-day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values calculated.
Results: DRV caused a concentration-dependent reduction in the DPV melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present, and the release medium. In macaques, serum concentrations of both
microbicides were maintained between 101-102 pg/mL. Vaginal fluid levels
ranged between 103-104 ng/g and 104-105 ng/g for DPV and DRV, respectively. Vaginal tissue concentrations decreased in rank order: vagina
(1.8×103-3.8×103 ng/g) > cervix (9.4×101-3.9×102 ng/g) > uterus (0-108 ng/g) > rectum (0-40 ng/g). Measured IC50 values (HIV-1 BaL) determined from macaque vaginal fluid samples were < 2 ng/mL for both compounds. Conclusions: Based on these results, and in light of the ongoing clinical progress of the 25mg DPV ring, a combination vaginal ring containing DPV and DRV is a viable second-generation HIV microbicide candidate.