89 resultados para DNA REPAIR
Resumo:
Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.
CHK1 inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-ß chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-ß, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-ß from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-ß exchange from heterochromatin, promoting DNA repair.
Resumo:
High rates of hepatocellular carcinoma (HCC) in The Gambia, West Africa, are primarily due to a high prevalence of chronic hepatitis B virus infection and heavy aflatoxin exposure via groundnut consumption. We investigated genetic polymorphisms in carcinogen-metabolizing (GSTM1, GSTT1, HYL1*2) and DNA repair (XRCC1) enzymes in a hospital-based case-control study. Incident HCC cases (n = 216) were compared with frequency-matched controls (n = 408) with no clinically apparent liver disease. Although the prevalence of variant genotypes was generally low, in multivariable analysis (adjusting for demographic factors, hepatitis B virus, hepatitis C virus, and TP53 status), the GSTM1-null genotype [odds ratio (OR), 2.45; 95% confidence interval (95% CI), 1.21-4.95] and the heterozygote XRCC1-399 AG genotype (OR, 3.18; 95% CI, 1.35-7.51) were significantly associated with HCC. A weak association of the HYL1*2 polymorphism with HCC was observed but did not reach statistical significance. GSTT1 was not associated with HCC. The risk for HCC with null GSTM1 was most prominent among those with the highest groundnut consumption (OR, 4.67; 95% CI, 1.45-15.1) and was not evident among those with less than the mean groundnut intake (OR, 0.64; 95% Cl, 0.20-2.02). Among participants who had all three suspected aflatoxin-related high-risk genotypes [GSTM1 null, HLY1*2 (HY/HH), and XRCC1 (AG/GG)], a significant 15-fold increased risk of HCC was observed albeit with imprecise estimates (OR, 14.7; 95% CI, 1.27-169). Our findings suggest that genetic modulation of carcinogen metabolism and DNA repair can alter susceptibility to HCC and that these effects may be modified by environmental factors.
Resumo:
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Resumo:
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Resumo:
Purpose: To examine whether the levels of micronuclei induction, as a marker for genomic instability in the progeny of X-irradiated cells, correlates with DNA repair function.
Materials and methods: Two repair deficient cell lines (X-ray repair cross-complementing 1 [XRCC1] deficient cell line [EM9] and X-ray repair cross complementing 5 [XRCC5; Ku80] deficient X-ray sensitive Chinese hamster ovary [CHO] cell line [xrs5]) were used in addition to wild-type CHO cells. These cells were irradiated with low doses of X-rays (up to 1 Gy). Seven days after irradiation, micronuclei formed in binucleated cells were counted. To assess the contribution of the bystander effect micronuclei induction was measured in progeny of non-irradiated cells co-cultured with cells that had been irradiated with 1Gy.
Results: The delayed induction of micronuclei in 1 Gy-irradiated cells was observed in normal CHO and EM9 but not in xrs5. In the clone analysis, progenies of xrs5 under bystander conditions showed significantly higher levels of micronuclei, while CHO and EM9 did not.
Conclusion: Genomic instability induced by X-irradiation is associated with DSB (double-strand break) repair, even at low doses. It is also suggested that bystander signals, which lead to genomic instability, may be enhanced when DSB repair is compromised.
Resumo:
Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.
Resumo:
Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.