4 resultados para DM FC
Resumo:
This work deals with the transient analysis of crystal size distribution (CSD) for imperfectly mixed draft tube baffled (DTB) and forced circulation (FC) crystallizers. The DTB and FC crystallizers are described by the Compartmental and Mixed models respectively. Monte Carlo (MC) scheme has been employed for simulation purposes. The simulation results have been compared with the available experimental data of BENNETT and VAN BUREN for continuous urea crystallizers.
Resumo:
We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRgamma (Fc receptor gamma) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRgamma chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cgamma2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (similar to 10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRgamma chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti(alpha2 integrin) antibodies Ha1/29 and HMalpha2, but not by blockade of alphaIIbbeta3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI-FcRgamma chain complex, and is facilitated by binding of collagen to integrin alpha2beta1.
Resumo:
Purpose: FcγR polymorphisms have been reported to enhance the immune-mediated effects of cetuximab in metastatic colorectal cancer. There are no data on the relationship between these polymorphisms and cetuximab in the early-stage setting. We performed a pharmacogenomic analysis of EXPERT-C, a randomized phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery, and adjuvant CAPOX ± cetuximab in high-risk, locally advanced rectal cancer.
Experimental Design: FcγRIIa-H131R and FcγRIIIa-V158F polymorphisms were analyzed on DNA from peripheral blood samples. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms.
Results: Genotyping was successfully performed in 105 of 164 (64%) patients (CAPOX = 54, CAPOX-C = 51). No deviation from the Hardy–Weinberg equilibrium or association of these polymorphisms with tumor RAS status was observed. FcγRIIa-131R (HR, 0.38; P = 0.058) and FcγRIIIa-158F alleles (HR, 0.21; P = 0.007) predicted improved progression-free survival (PFS) in patients treated with cetuximab. In the CAPOX-C arm, carriers of both 131R and 158F alleles had a statistically significant improvement in PFS (5 years: 78.4%; HR, 0.22; P = 0.002) and overall survival (OS; 5 years: 86.4%; HR, 0.24; P = 0.018) when compared with patients homozygous for 131H and/or 158V (5-year PFS: 35.7%; 5-year OS: 57.1%). An interaction between cetuximab benefit and 131R and 158F alleles was found for PFS (P = 0.017) and remained significant after adjusting for prognostic variables (P = 0.003).
Conclusion: This is the first study investigating FcγRIIa and FcγRIIIa polymorphisms in patients with early-stage colorectal cancer treated with cetuximab. We showed an increased clinical benefit from cetuximab in the presence of 131R and 158F alleles.