6 resultados para DKO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of preexisting hypercholesterolemia to diabetic nephropathy remains unclear. We assessed the impact of hypercholesterolemia on diabetic nephropathy using a double knockout (DKO) mouse, null for the low-density lipoprotein receptor (LDLRNDASH;/NDASH;) and the apoB mRNA editing catalytic polypeptide 1 (APOBEC1NDASH;/NDASH;).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the roles of the CCL2-CCR2 and CX3CL1-CX3CR1 pathways in experimental autoimmune uveoretinitis (EAU)-mediated retinal tissue damage and angiogenesis.

Methods: The C57BL/6J wild-type (WT) and CCL2−/−CX3CR1gfp/gfp (double knockout [DKO]) mice were immunized with IRBP1-20. Retinal inflammation and tissue damage were evaluated clinically and histologically at different days postimmunization (p.i.). Retinal neovascular membranes were evaluated by confocal microscopy of retinal flat mounts, and immune cell infiltration by flow cytometry.

Results: At day 25 p.i., DKO mice had lower clinical and histological scores and fewer CD45highCD11b+ infiltrating cells compared with WT mice. The F4/80+macrophages constitute 40% and 21% and CD11b+Gr-1+Ly6G+ neutrophils constitute 10% and 22% of retinal infiltrating cells in WT and DKO mice, respectively. At the late stages of EAU (day 60–90 p.i.), DKO and WT mice had similar levels of inflammatory score. However, less structural damage and reduced angiogenesis were detected in DKO mice. Neutrophils were rarely detected in the inflamed retina in both WT and DKO mice. Macrophages and myeloid-derived suppressor cells (MDSCs) accounted for 8% and 3% in DKO EAU retina, and 19% and 10% in WT EAU retina; 71% of infiltrating cells were T/B-lymphocytes in DKO EAU retina and 50% in WT EAU retina.

Conclusions: Experimental autoimmune uveoretinitis–mediated retinal tissue damage and angiogenesis is reduced in CCL2−/−CX3CR1gfp/gfp mice. Retinal inflammation is dominated by neutrophils at the acute stage and lymphocytes at the chronic stage in these mice. Our results suggest that CCR2+ and CX3CR1+monocytes are both involved in tissue damage and angiogenesis in EAU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The canonical Wnt signaling is activated by retinal injury. Under disease conditions, the Wnt mediates inflammatory responses. Inflammation has been detected in age-related macular degeneration (AMD) retinas and Ccl2-/-/Cx3cr1-/- (DKO) mice with or without rd8 background, a model with progressive AMD-like lesions including focal photoreceptor/RPE degeneration and A2E accumulation. We evaluated the effects of Wnt-β-catenin activation and an antibody against LRP6, the co-receptor of Wnt on these two models.

Methods: anti-LRP6 antibody (2F1, 1 μl of 5 μg/μL) was intravitreally injected into the right eyes in 3 separate experiments (DKOrd8, N=35; DKO, N=10). The left eyes were injected with mouse IgG as controls. Fundoscopy was taken before injection and sequentially monthly after injection. Two months after injection, light-adapted ERG responses were recorded; then the eyes were harvested for histopathology, the determination of retinal A2E, and molecular analysis. The microarray of ocular mRNA of 92 Wnt genes was compared between the treated and the control eyes. The phosphorylated types of LRP6 and β-catenin and endogenous forms of the proteins were assayed by Western blotting.

Results: For DKOrd8 mice, the fundus showed a slower progression or alleviation of retinal lesions in the right eyes as compared to the left eyes. Among 35 pairs of eyes, 26 (74.3%) were improved, 7 (20%) stayed the same and 2 (5.7%) remained progressing. Histology confirmed the clinical observation. Light-adapted ERG of the treated eyes exhibited larger amplitudes compared to control eyes (n=6), with greater improvements under UV light stimulus. There was a significantly lower A2E in the treated eyes compared to controls. Microarray of 92 Wnt genes expression pattern was similar in both eyes. Western blotting indicated local administration of 2F1 antibody to suppress the activation of Wnt pathway in the retina. For DKO mice, the treatment improved ERG but less effect on RPE degeneration.

Conclusions: The canonical Wnt signaling plays a role in the focal retina lesion of both DKOrd8 and DKO mice; and intravitreal anti-LRP6 antibody might be neuroprotective via deactivation of canonical Wnt pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.

METHODOLOGY/PRINCIPAL FINDINGS: Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.

CONCLUSIONS/SIGNIFICANCE: We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (approximately 0.1 Hz) but was impaired at firing rates within the physiological range (approximately 2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II.