34 resultados para DISTRIBUCIÓN VERTICAL DE TREMPERATURA
Resumo:
Macroalgal epiphytes within seagrass meadows make a significant contribution to total primary production by assimilating water column N and transferring organic N to sediments. Assimilation of NO3 – requires nitrate reductase (NR, EC 1.6.6.1); NR activity represents the capacity for NO3 – assimilation. An optimised in vitro assay for determining NR activity in algal extracts was applied to a wide range of macroalgae and detected NR activity in all 22 species tested with activity 2 to 290 nmolNO3 – min–1 g–1 frozen thallus. With liquid-N2 freezing immediately after sample collection, this method was practical for estimating NR activity in field samples. Vertical distribution of NR activity in macroalgal epiphytes was compared in contrasting Posidonia sinuosa and Amphibolis antarctica seagrass meadows. Epiphytes on P. sinuosa had higher mass-specific NR activity than those on A. antarctica. In P. sinuosa canopies, NR activity increased with distance from the sediment surface and was negatively correlated with [NH4 +] in the water but uncorrelated with [NO3 –]. This supported the hypothesis that NH4 + released from the sediment suppresses NR in epiphytic algae. In contrast, the vertical variation in NR activity in macroalgae on A. antarctica was not statistically significant although there was a weak correlation with [NO3 –], which increased with distance from the sediment. Estimated capacities for NO3 – assimilation in macroalgae epiphytic on seagrasses during summer (24 and 46 mmolN m–2 d–1 for P. sinuosa and A. antarctica, respectively) were more than twice the estimated N assimilation rates in similar seagrasses. When the estimates were based on annual average epiphyte loads for seagrass meadows in other locations, they were comparable to those of seagrasses. We conclude that epiphytic algae represent a potentially important sink for water-column nitrate within seagrass meadows.
Resumo:
Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90° elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s -1. The elbow bend pressure drop was best correlated in terms of le/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data.
Resumo:
This paper reports an experimental study in which samples of soft kaolin clay (100 mm in diameter and 200 mm in height) were reinforced with vertical columns of sand and tested under triaxial conditions. Samples were reinforced with either a single column of sand of 32 mm diameter or three columns of sand, each of 20 mm diameter. The replacement method was used to form the columns. The columns were installed in the clay to depths of 120 and 200 mm. Tests were also carried out on samples that were not reinforced with sand columns. The samples were compressed under both drained and undrained conditions. It was found that the undrained shear strength of samples containing full-depth columns was greatly improved compared with that of the unreinforced samples. In the fully drained tests, the sample installed with a single column of 32 mm diameter exhibited better performance than the sample with three columns of 20 mm diameter, although the area replacement ratio in the case of the three 20 mm diameter columns was higher than that of the single 32 mm diameter column. However, the undrained strength of the composite material was not particularly affected by the number of columns.
Resumo:
Argulus foliaceus is a damaging fish ectoparasite for which new control measures are being developed based on egg-removal, In an attempt to develop further understanding of seasonal and vertical egg-laying patterns in this parasite, egg-laying activity was monitored over the period 14 April to 17 November 2003 in 2 rainbow trout Oncorhynchus mykiss fisheries in Northern Ireland, UK. At Site 1, egg-laying was continuous from 21 April to 17 November, when water temperature was above 8 to 10 degrees C. At Site 2, egg-laying was continuous from 4 June to 29 October. In the early months of the season, egg-laying was recorded mainly within the top 1 m of the water column; however, a significant shift to deep water egg-laying was recorded between 7 July and 17 November at Site 1 and between 20 August and 29 October at Site 2. Egg clutches were preferentially laid at depths of up to 8.5 m during this time (Site 2), a feature of egg-laying hitherto unappreciated. Temperature and dissolved oxygen did not differ significantly among depths, but there was an increase in water clarity over time. However, the precise environmental triggers for deep water egg-laying are still unclear. These new insights into the reproductive behaviour of this species will be useful in developing control methods based on egg-removal.
Resumo:
Ferrocene, Fc, and cobaltocenium hexafluorophosphate, CcPF(6), have been recommended for use as internal reference redox couples in room-temperature ionic liquids (RTILs), as well as in more conventional aprotic solvents. In this study, the electrochemical behavior of Fc and CcPF(6) is reported in eight commonly used RTILs; [C(2)mim][NTf2], [C(4)mim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], [C(4)mim][OTf], [C(4)mim][NO3], [C(4)mpyrr][NTf2], and [P-14,P-6.6,P-6][FAP], where [C(n)mim](+) = 1-butyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, [PF6](-) = hexafluorophosphate, [OTf](-) = trifluoromethylsulfonate, [NO3](-) = nitrate, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [P-14,P-6,P-6,P-6](+) = tris(ri-hexyl)-tetradecylphosphonium and [FAP](-) = trifluorotris(pentafluoroethyl)phosphate, over a range of concentrations and temperatures. Solubilities and diffusion coefficients, D, of both the charged and neutral species were determined using double potential-step chronoamperometry, and CcPF(6) (36.5-450.0 mM) was found to be Much more Soluble than Fc (27.5-101.8 mM). It was observed that classical Stokes-Einstein diffusional behavior applies for Fc and CcPF(6) in all eight RTILs. Diffusion coefficients of Fc and CcPF(6) were calculated at a range of temperatures, and activation energies calculated. It was also determined that D for Fc and CcPF(6) does not change significantly with concentration. This supports the use of both Fe and CcPF(6) to provide a well-characterized and model redox couple for use as a voltammetric internal potential reference in RTILs contrary to previous literature reports in the former case.
Resumo:
The voltammetry and kinetics of the Ag vertical bar Ag+ system (commonly used as a reference electrode material in both protic/aprotic and RTIL solvents) was studied in the room-temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr][NTf2] on a 10 mu m diameter Pt electrode. For the three silver salts investigated (AgOTf, AgNTf2, and AgNO3, where OTf- = trifluoromethanesulfonate, NTf2- = bis(trifluoromethylsulfonyl)imide, and NO3- = nitrate), the voltammetry gave rise to a redox couple characteristic of a