4 resultados para DIFFERENTIATE ALZHEIMERS-DISEASE
Resumo:
The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.
Resumo:
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Resumo:
Although epidemiological studies suggest that type 2 diabetes mellitus (T2DM) increases the risk of late-onset Alzheimer's disease (LOAD), the biological basis of this relationship is not well understood. The aim of this study was to examine the genetic comorbidity between the 2 disorders and to investigate whether genetic liability to T2DM, estimated by a genotype risk scores based on T2DM associated loci, is associated with increased risk of LOAD. This study was performed in 2 stages. In stage 1, we combined genotypes for the top 15 T2DM-associated polymorphisms drawn from approximately 3000 individuals (1349 cases and 1351 control subjects) with extracted and/or imputed data from 6 genome-wide studies (>10,000 individuals; 4507 cases, 2183 controls, 4989 population controls) to form a genotype risk score and examined if this was associated with increased LOAD risk in a combined meta-analysis. In stage 2, we investigated the association of LOAD with an expanded T2DM score made of 45 well-established variants drawn from the 6 genome-wide studies. Results were combined in a meta-analysis. Both stage 1 and stage 2 T2DM risk scores were not associated with LOAD risk (odds ratio = 0.988; 95% confidence interval, 0.972-1.004; p = 0.144 and odds ratio = 0.993; 95% confidence interval, 0.983-1.003; p = 0.149 per allele, respectively). Contrary to expectation, genotype risk scores based on established T2DM candidates were not associated with increased risk of LOAD. The observed epidemiological associations between T2DM and LOAD could therefore be a consequence of secondary disease processes, pleiotropic mechanisms, and/or common environmental risk factors. Future work should focus on well-characterized longitudinal cohorts with extensive phenotypic and genetic data relevant to both LOAD and T2DM.
Resumo:
Vascular cognitive impairment (VCI), including its severe form, vascular dementia (VaD), is the second most common form of dementia. The genetic etiology of sporadic VCI remains largely unknown. We previously conducted a systematic review and meta-analysis of all published genetic association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ɛ4, ɛ2) and MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was conducted in a new independent relatively large collaborative European cohort of VaD (nmax = 549) and elderly non-demented samples (nmax = 552). Where available, genotype data derived from Illumina's 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR = 1.36, 95% CI 1.16-1.58, p = <0.0001), APOE rs7412 (OR = 0.62, 95% CI 0.42-0.90, p = 0.01), and APOE rs429358 (OR = 1.59, 95% CI 1.17-2.16, p = 0.003). Association was also observed with APOE epsilon alleles; ɛ4 (OR = 1.85, 95% CI 1.35-2.52, p = <0.0001) and ɛ2 (OR = 0.67, 95% CI 0.46-0.98, p = 0.03). Logistic Regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, age, and population maintained the association of APOE rs429358 and ɛ4 allele.