4 resultados para DESMOPLASTIC TRICHOEPITHELIOMA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desmoplastic small round cell tumor is a rare malignant neoplasm mostly occurring in the vicinity of or within the peritoneal cavity, and is uncommon in the head and neck region. Tumor location within a major salivary gland is exceptional. We report a case of a 41-year-old Chinese man with a history of diabetes mellitus and end-stage renal failure on peritoneal dialysis with a desmoplastic small round cell tumor occurring in the left submandibular gland. Fine-needle aspiration cytology showed variably cohesive clusters of small cells with hyperchromatic nuclei and fine granular chromatin. On histology the neoplasm displayed classic features of a desmoplastic small round cell tumor with angulated nests of small round blue cells in a fibromyxoid/desmoplastic stroma. Neoplastic cells were immunoreactive for cytokeratins (AE1/3), desmin (paranuclear dot-like), WT-1 (nuclear), epithelial membrane antigen, and CD56. EWS gene translocation and EWS-WT1 gene fusion were detected by fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction, respectively. The case presented is the sixth case of and the oldest reported patient with a desmoplastic small round cell tumor occurring in a major salivary gland to date. Desmoplastic small round cell tumor should be considered in the differential diagnosis of a salivary gland neoplasm with a basaloid or small cell pattern on fine-needle aspiration cytology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desmoplastic small round cell tumor (DSRCT) is a rare undifferentiated neoplasm. The prognosis is poor, even if therapy is instituted promptly. and thus it is important to differentiate it from other histologically and cytologically similar-looking malignancies of the young adult. We present a case of DSRCT in a 17-yr-old male with disseminated peritoneal disease and peritoneal effusion. The cytology sample showed a malignant small round cell tumor, the classical cytological features of DSRCT, and immunohistochemistry performed in the prepared cell block exhibited an antibody expression profile in keeping with DSRCT. Further material front the effusion was prepared for RNA extraction, following which a reverse-transcriptase polymerase chain reaction (RTPCR) and sequencing of the t(l l;22)(p13;q11 or q12) were carried out. The result showed the presence of the reciprocal translocation and thus confirmed the diagnosis of DSRCT. This case shows how molecular techniques (including sequencing) call be applied to cytology in clarifying and confirming certain difficult diagnosis of undifferentiated neoplasms, DSRCT in this particular case. Diagn. Cytopathol. 2003;29:341-343. (C) 2003 Wiley-Liss. Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of cancer death and has an extremely poor prognosis: The 5-year survival probability is less than 5% for all stages. The only chance for cure or longer survival is surgical resection; however, only 10% to 20% of patients have resectable disease. Although surgical techniques have improved, most who undergo complete resection experience a recurrence. Adjuvant systemic therapy reduces the recurrence rate and improves outcomes. There is a potential role for radiation therapy as part of treatment for locally advanced disease, although its use in both the adjuvant and neoadjuvant settings remains controversial. Palliative systemic treatment is the only option for patients with metastatic disease. To date, however, only the gemcitabine plus erlotinib combination, and recently the FOLFIRINOX regimen, have been associated with relatively small but statistically significant improvements in OS when compared directly with gemcitabine alone. Although several meta-analyses have suggested a benefit associated with combination chemotherapy, whether this benefit is clinically meaningful remains unclear, particularly in light of the enhanced toxicity associated with combination regimens. There is growing evidence that the exceptionally poor prognosis in PC is caused by the tumor's characteristic abundant desmoplastic stroma that plays a critical role in tumor cell growth, invasion, metastasis, and chemoresistance. Carefully designed clinical trials that include translational analysis will provide a better understanding of the tumor biology and its relation to the host stromal cells. Future directions will involve testing of new targeted agents, understanding the pharmacodynamics of our current targeted agents, searching for predictive and prognostic biomarkers, and exploring the efficacy of different combinations strategies.