13 resultados para DEGRADABLE POLYESTER
Resumo:
Mixtures of two cleavable dimethacrylate crosslinkers, the hydrolyzable di(methacryloyloxy-1-ethoxy)methane (DMOEM) and the thermolyzable 1,1-ethylene-diol dimethacrylate (EDDMA), were used for the preparation of neat crosslinker polymer networks, randomly crosslinked polymer networks of methyl methacrylate (MMA), and star polymers of MMA, using group transfer polymerization in tetrahydrofuran (THF). All star polymers and randomly crosslinked polymer networks containing mixtures of the hydrolyzable DMOEM and the thermolyzable EDDMA crosslinkers gave THF-soluble final products when subjected to sequential thermolysis and hydrolysis, in this order. When applying sequential hydrolysis and thermolysis, only the star polymers with an EDDMA crosslinker content equal to or higher than 50% gave THF-soluble final products.
Resumo:
A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.
Resumo:
Various grades of Thermoplastic Polyurethane (TPU) supplied by Bayer were studied to determine their suitability for the rotational moulding process. Following grinding, parts were produced using a variety of peak internal air temperatures and cooling rates. The tensile and impact properties of these parts were then analysed and it was found that both the grade and moulding conditions had a large bearing on the quality and mechanical strength of the part produced.
Resumo:
Poly-L-Lactide is a bioresorbable polymer which degrades through hydrolysis of its ester linkage influenced by initial molecular weight and degree of crystallinity. Polymers belonging to the aliphatic polyester family currently represent the most attractive group of polymers that meet the medical and physical demands for safe clinical applications. Compression moulded PLLA pellets were produced as rods, sterilized and degraded both in vitro and in vivo (sub-dermal implantation model). The material molecular weight, crystallinity, mechanical strength and thermal properties were evaluated. In both in vitro and in vivo environments, degradation proceeded at the same rate and followed the general sequence of aliphatic polyester degradation, ruling out enzymes accelerating the degradation rate in vivo. By 44 weeks duration of implantation the PLLA rods were still biocompatible, before any mass loss was observed.
Resumo:
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials
Resumo:
Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.
Resumo:
The degradable polymers polylactide (PLA) and polylactide-co-glycolide (PLGA) have found widespread use in modern medical practice. However, their slow degradation rates and tendency to lose strength before mass have caused problems. The aim of this study was to ascertain whether treatment with e-beam radiation could address these problems. Samples of PLA and PLGA were manufactured and placed in layered stacks, 8.1 mm deep, before exposure to 50 kGy of e-beam radiation from a 1.5 MeV accelerator. Gel permeation chromatography testing showed that the molecular weight of both materials was depth-dependent following irradiation, with samples nearest to the treated surface showing a reduced molecular weight. Samples deeper than 5.4 mm were unaffected. Computer modeling of the transmission of a 1.5 MeV e-beam in these materials corresponded well with these findings. An accelerated mass-loss study of the treated materials found that the samples nearest the irradiated surface initiated mass loss earlier, and at later stages showed an increased percentage mass loss. It was concluded that e-beam radiation could modify the degradation of bioabsorbable polymers to potentially improve their performance in medical devices, specifically for improved orthopedic fixation.
Resumo:
This paper provides an overview of research on modelling of the structure–property interactions of polymer nanocomposites in manufacturing processes (stretch blow moulding and thermoforming) involving large-strain biaxial stretching of relatively thin sheets, aimed at developing computer modelling tools to help producers of materials, product designers and manufacturers exploit these materials to the full, much more quickly than could be done by experimental methods alone. The exemplar systems studied are polypropylene and polyester terephalate, with nanoclays. These were compounded and extruded into 2mm thick sheet which was then biaxially stretched at 155°C for the PP and 90 to 100°C for the PET. Mechanical properties were determined for the unstretched and stretched materials, together with TEM and XRD studies of structure. Multi-scale modelling, using representative volume elements is used to model the properties of these products.
Resumo:
Hydrogenolysis of bark from three different species of tree using heterogeneous platinum group metal catalysts produces two major product streams. Aromatic substituted guaiacols are produced from lignin and the lignin-like regions of suberin and a range of saturated fatty acids and alcohols, including a,?-functionalised species, are produced from the polyester regions of suberin. Control experiments demonstrate clear advantages of catalytic hydrogenolysis over base hydrolysis, both in terms of conversion and product selectivity.
Resumo:
This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.
Resumo:
Development of green composite from natural fibers has gained increasing interests due to the environmental and sustainable benefits when compared with petroleum based non-degradable materials. However, a big challenge of green composites is the diversity of fiber sources, because of the large variation in the properties and characteristics of the lignocellulosic renewable resource. The lignocellulosic fibers/natural fibers used to reinforce green composites are reviewed in this chapter. A classification of fiber types and sources, the properties of various natural fibers, including structure, composition, physical and chemical properties are focused; followed by the impacts of natural fibers on composite properties, with identification of the main pathways from the natural fibers to the green composite. Furthermore, the main challenges and future trend of natural fibers are highlighted.
Resumo:
Green composites are important class of biocomposites widely explored due to their enhanced properties. The biodegradable polymeric material is reinforced with natural fibers to form a composite that is eco-friendly and environment sustainable. The green composites have potential to attract the traditional petroleum-based composites which are toxic and nonbiodegradable. The green composites eliminate the traditional materials such as steel and wood with biodegradable polymer composites. The degradable and environment-friendly green composites were prepared by various fabrication techniques. The various properties of different fiber composite were studied as reinforcement for fully biodegradable and environmental-friendly green composites.