8 resultados para DBI-0620409
Resumo:
A simple design for a low-profile high-gain planar antenna has been presented in the letter. The antenna has the realized gain between 9 and 11 dBi and the return loss better than 10 dB over the 5.6-6.3-GHz frequency band, i.e. 11% bandwidth. A numerical study highlighting effects of key geometrical parameters on the gain and return loss of the antenna has been performed. It has been shown as well that the presented antenna occupies area 20% smaller than a conventional microstrip patch antenna array with a similar gain.
Resumo:
Presented is a design methodology which permits the application of distributed coupled resonator bandpass filter principles to form wideband small-aperture evanescent-mode waveguide antenna designs. This approach permits matching of the complex antenna aperture admittance of an evanescent-mode open-ended waveguide to a real impedance generator, and thereby to a coaxial feed probe. A simulated reflection coefficient of < - 10 dB was obtained over a bandwidth of 20%, from 2.0-2.45 GHz, in a 2.58 GHz cutoff waveguide. Dielectric-filled propagating waveguide and air-filled evanescent-mode waveguide sections are used to form the resonators/coupling elements of the antenna's coupled resonator matching sections. Simulated realised gain variation from 3.4-5.0 dBi is observed across the bandwidth. The antenna's maximum aperture dimension is < 0.47 wavelength at the upper operating frequency and so it is suitable for use in a wide angle scanning phased array.
Resumo:
The implementation of a dipole antenna co-designed and monolithically integrated with a low noise amplifier (LNA) on low resistivity Si substrate (20 Omega . cm) manufactured in 0.35 mu m commercial SiGe HBT process with f(T)/f(max) of 170 GHz and 250 GHz is investigated theoretically and experimentally. An air gap is introduced between the chip and a reflective ground plane, leading to substantial improvements in efficiency and gain. Moreover, conjugate matching conditions between the antenna and the LNA are exploited, enhancing power transfer between without any additional matching circuit. A prototype is fabricated and tested to validate the performance. The measured 10-dB gain of the standalone LNA is centered at 58 GHz with a die size of 0.7 mm x 0.6 mm including all pads. The simulated results showed antenna directivity of 5.1 dBi with efficiency higher than 70%. After optimization, the co-designed LNA-Antenna chip with a die size of 3 mm x 2.8 mm was characterized in anechoic chamber environment. A maximum gain of higher than 12 dB was obtained.
Resumo:
The paper proposes novel substrate integrated waveguide (SIW) slot antenna for E-band communications. The antenna is designed at a two-layer low temperature co-fired ceramic (LTCC) substrate in 71-76 GHz frequency band. The proposed antenna demonstrates a gain better than 11.3 dBi and efficiency of 85% and can be used as a standalone antenna or as an element of a larger array.
Resumo:
Background: Increased exposure to anticholinergic medication is problematic, particularly in those aged 80 years and older.
Objective: The aim of this systematic review was to identify tools used to quantify anticholinergic medication burden and determine the most appropriate tool for use in longitudinal research, conducted in those aged 80 years and older.
Methods: A systematic literature search was conducted across six electronic databases to identify existing tools. Data extraction was conducted independently by two researchers; studies describing the development of each tool were also retrieved and relevant data extracted. An assessment of quality was completed for all studies. Tools were assessed in terms of their measurement of the association between anticholinergic medication burden and a defined set of clinical outcomes, their development and their suitability for use in longitudinal research; the latter was evaluated on the basis of criteria defined as the key attributes of an ideal anticholinergic risk tool.
Results: In total, 807 papers were retrieved, 13 studies were eligible for inclusion and eight tools were identified. Included studies were classed as ‘very good’ or ‘good’ following the quality assessment analysis; one study was unclassified. Anticholinergic medication burden as measured in studies was associated with impaired cognitive and physical function, as well as an increased frequency of falls. The Drug Burden Index (DBI) exhibited most of the key attributes of an ideal anticholinergic risk tool.
Conclusion: This review identified the DBI as the most appropriate tool for use in longitudinal research focused on older people and their exposure to anticholinergic medication burden.
Resumo:
It is shown that the direction-of-arrival (DoA) information carried by an incident electromagnetic (EM) wave can be encoded into the evanescent near field of an electrically small resonance antenna array with a spatial rate higher than that of the incident field oscillation rate in free space. Phase conjugation of the received signal leads to the retrodirection of the near field in the antenna array environment, which in turn generates a retrodirected far-field beam toward the original DoA. This EM phenomenon enables electrically small retrodirective antenna arrays with superdirective, angular super-resolution, auto-pointing properties for an arbitrary DoA. A theoretical explanation of the phenomenon based on first principal observations is given and full-wave simulations demonstrate a realizability route for the proposed retrodirective terminal that is comprised of resonance dipole antenna elements. Specifically, it is shown that a three-element disk-loaded retrodirective dipole array with 0.15\lambda spacings can achieve a 3.4-dBi maximal gain, 3-dBi front-to-back ratio, and 13% return loss fractional bandwidth (at the 10-dB level). Then, it is demonstrated that the radiation gain of a three-element array can be improved to approximately 6 dBi at the expense of the return loss fractional bandwidth reduction (2%).
Resumo:
This paper presents a novel high symmetry balun which significantly improves the performance of dipole-based dual-polarized antennas. The new balun structure provides enhanced differential capability leading to high performance in terms of port-to-port isolation and far-field cross polarization. An example antenna using this balun is proposed. The simulated results show 53.5% of fractional bandwidth within the band 1.71−2.96 GHz (VSWR<1.5) and port-to-port isolation >59 dB. The radiation characteristic shows around 9 dBi of gain and far-field cross polarization <−48 dBi over the entire bandwidth. The detailed balun functioning and full antenna measurements will be presented during the conference. Performance comparison with similar structures will be also provided.