38 resultados para D-shape quartz column
Resumo:
In this paper we present a new method for simultaneously determining three dimensional (3-D) shape and motion of a non-rigid object from uncalibrated two dimensional (2- D) images without assuming the distribution characteristics. A non-rigid motion can be treated as a combination of a rigid rotation and a non-rigid deformation. To seek accurate recovery of deformable structures, we estimate the probability distribution function of the corresponding features through random sampling, incorporating an established probabilistic model. The fitting between the observation and the projection of the estimated 3-D structure will be evaluated using a Markov chain Monte Carlo based expectation maximisation algorithm. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results.
Resumo:
Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confine concrete sections to improve their shear strength, flexural ductility and ultimate strain. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit beam-column joints in non-seismically designed reinforced concrete buildings. SMAs are complex materials and their material behaviour depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first.
Resumo:
Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confining concrete sections to improve their shear strength, flexural ductility and ultimate strain capacity. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit a beam-column joint in non-seismically designed reinforced concrete buildings.
The complex material behaviour of SMAs depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first in this paper.
Resumo:
The distribution coefficient, K-d, is often used to quantify heavy metal mobility in soils. Batch sorption or column infiltration tests may be used to measure K-d. The latter are closer to natural soil conditions, but are difficult to conduct in clays. This difficulty can be overcome by using a laboratory centrifuge. An acceleration of 2600 gravities was applied to columns of London Clay, an Eocene clay sub-stratum, and Cu, Ni, and Zn mobility was measured in centrifuge infiltration tests, both as single elements and in dual competition. Single-element K-d values were also obtained from batch sorption tests, and the results from the two techniques were compared. It was found that K-d values obtained by batch tests vary considerably depending on the metal concentration, while infiltration tests provided a single K-d value for each metal. This was typically in the lower end of the range of the batch test K-d values. For both tests, the order of mobility was Ni > Zn > Cu. Metals became more mobile in competition than when in single-element systems: Ni K-d decreased 3.3 times and Zn K-d 3.4 times when they competed with Cu, while Cu decreased only 1.2 times when in competition with either Ni or Zn. Our study showed that competitive sorption between metals increases the mobility of those metals less strongly bound more than it increases the mobility of more strongly bound metals.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
Power deposition in the head of a user wearing metal-framed spectacles was calculated with a 450 MHz personal radio transmitting in close proximity. Peak tissue SAR in the head depended on lens shape whether circular half-rim or rectangular with 70 and 174% increases, respectively, compared to the spectacle-free case. However, localised screening occurred with square frames, with a 40% reduction of peak SAR in the eye closest to the antenna.
SP and IP Monitoring of Biogeochemical Evolution Activity of SRBs in a Simplified Winogradsky Column
Resumo:
A microfluidic glass chip system incorporating a quartz crystal microbalance (QCM) to measure the square root of the viscosity-density product of room temperature ionic liquids (RTILs) is presented. The QCM covers a central recess on a glass chip, with a seal formed by tightly clamping from above outside the sensing region. The change in resonant frequency of the QCM allows for the determination of the square root viscosity-density product of RTILs to a limit of similar to 10 kg m(-2) s(-0.5). This method has reduced the sample size needed for characterization from 1.5 ml to only 30 mu l and allows the measurement to be made in an enclosed system.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.