40 resultados para Curaua fiber
Resumo:
Slurries with high penetrability for production of Self-consolidating Slurry Infiltrated Fiber Concrete (SIFCON) were investigated in this study. Factorial experimental design was adopted in this investigation to assess the combined effects of five independent variables on mini-slump test, plate cohesion meter, induced bleeding test, J-fiber penetration test and compressive strength at 7 and 28 days. The independent variables investigated were the proportions of limestone powder (LSP) and sand, the dosages of superplasticiser (SP) and viscosity agent (VA), and water-to-binder ratio (w/b). A two-level fractional factorial statistical method was used to model the influence of key parameters on properties affecting the behaviour of fresh cement slurry and compressive strength. The models are valid for mixes with 10 to 50% LSP as replacement of cement, 0.02 to 0.06% VA by mass of cement, 0.6 to 1.2% SP and 50 to 150% sand (% mass of binder) and 0.42 to 0.48 w/b. The influences of LSP, SP, VA, sand and W/B were characterised and analysed using polynomial regression which identifies the primary factors and their interactions on the measured properties. Mathematical polynomials were developed for mini-slump, plate cohesion meter, J-fiber penetration test, induced bleeding and compressive strength as functions of LSP, SP, VA, sand and w/b. The estimated results of mini-slump, induced bleeding test and compressive strength from the derived models are compared with results obtained from previously proposed models that were developed for cement paste. The proposed response models of the self-consolidating SIFCON offer useful information regarding the mix optimization to secure a highly penetration of slurry with low compressive strength
Resumo:
Objective: To examine the association between dietary glycemic index (GI), glycemic load (GL), total carbohydrate, sugars, starch, and fiber intakes and the risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma.
Methods: In an all-Ireland study, dietary information was collected from patients with esophageal adenocarcinoma (n = 224), long-segment Barrett’s esophagus (n = 220), reflux esophagitis (n = 219), and population-based controls (n = 256). Multiple logistic regression analysis examined the association between dietary variables and disease risk by tertiles of intake and as continuous variables, while adjusting for potential confounders.
Results: Reflux esophagitis risk was positively associated with starch intake and negatively associated with sugar intake. Barrett’s esophagus risk was significantly reduced in people in the highest versus the lowest tertile of fiber intake (OR 0.44 95%CI 0.25–0.80). Fiber intake was also associated with a reduced risk of esophageal adenocarcinoma, as was total carbohydrate intake (OR 0.45 95%CI 0.33–0.61 per 50 g/d increase). However, an increased esophageal adenocarcinoma risk was detected per 10 unit increase in GI intake (OR 1.42 95%CI 1.07–1.89).
Conclusions: Our findings suggest that fiber intake is inversely associated with Barrett’s esophagus and esophageal adenocarcinoma risk. Esophageal adenocarcinoma risk is inversely associated with total carbohydrate consumption but positively associated with high GI intakes.
Resumo:
The association fiber tracts integrity of the inter-hemispheric and within-hemispheric communication was poor understood in amnestic type mild cognitive impairment (aMCI) patients by diffusion tensor imaging (DTI). A region of interest-based DTI approach was applied to explore fiber tract differences between 22 aMCI patients and 22 well-matched normal aging. Correlations were also sought between fractional anisotropy (FA) values and the cognitive performance scores in the aMCI patients. Extensive impairment of association fiber tracts integrity was observed in aMCI patients, including bilateral inferior fronto-occipital fascicles, the genu of corpus callosum, bilateral cingulate bundles and bilateral superior longitudinal fascicles II (SLE II) subcomponent. In addition, the FA value of right SLE II was significantly negatively correlated to the performance of Trail Making Test A and B, whilst the values of right posterior cingulate bundle was significantly positive correlation with MMSE score. As aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), this study suggested that investigation of association fiber tracts between remote cortexes may yield important new data to predict whether a patient will eventually develop AD.
Resumo:
In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
The development of a reflective, gold-coated long-period grating-based sensor for the measurement of chloride ions in solution is discussed. The sensor scheme is based around a long-period fiber grating (LPG)-based Michelson interferometer where the sensor was calibrated and evaluated in the laboratory using sodium chloride solutions, over a wide range of concentrations, from 0.01 to 4.00 M. The grating response creates shifts in the spectral characteristic of the interferometer, formed using the LPG and a reflective surface on the distal end of the fiber, due to the change of refracting index of the solution surrounding it. It was found that the sensitivity of the device could be enhanced over that obtained from a bare fiber by coating the LPG-based interferometer with gold nanoparticles and the results of a cross-comparison of performance were obtained and details discussed. The approach will be explored as a basis to create a portable, low-power device, developed with the potential for installation in concrete structures to determine the ingress of chloride ions, operating through monitoring the refractive index change.
Resumo:
This paper could be consider seminal in the Civil Engineering field as it describes the first application of these sensors to a complex durability and management issue. For this reason it is potentially controversial as it requires Civil Engineers to re-evaluate the nature and scale of durability testing.
Resumo:
Injection-molded short- and long-glass fiber/polyamide 6,6 composites were subjected to tensile tests. To measure the effectiveness of the fibers in reinforcing the composites, a computational approach was employed to compute the fiber– matrix ISS, orientation factor, reinforcement efficiency, tensile-, and fiber length-related properties. Although the LFCs showed great improvement in fiber characteristics compared to the SFCs, enhancement in tensile properties was small, which is believed to be due to the larger fiber diameter. Kelly–Tyson model provides good approximation for the computation of ISS and tensile-related properties.
Resumo:
A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.
Resumo:
We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)proportional to(T-f-t)(-xi) where T-f is the lifetime of the bundle and xi approximate to 1.0 is a universal scaling exponent. The average lifetime of the bundle [T-f] scales with the system size as N-delta, where delta depends on the distribution of individual fiber as well as the breakdown rule. [S1063-651X(99)13902-3].