14 resultados para Coxsackievirus B5
Resumo:
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.
Resumo:
The B5 dark cloud has been identified as a site of low-mass star formation. We report a survey of a selection of the molecular species modelled by the B5 dynamical and chemical model of Charnley et al. at the positions of circumstellar HCN clumps in B5 IRS1. All of the key species observed yield either abundances or upper limits to abundances below both the standard and the predicted values, appearing to show evidence of depletion and/or destruction if the transitions observed are thermalized. Our results are not in good agreement with the model, and they bring into question the interpretation of the structure of B5 IRS1 proposed by Fuller et al. It was expected that HCN clump C might exhibit a higher excitation than HCN clump A, since it appeared to be located within the blueshifted molecular outflow. However, there is no significant difference observed between the two clumps, suggesting that the near-infrared and optical nebulosity is evidence of a reflection nebula rather than shocked material in the outflow. Finally, it is observed that our results are more consistent with gas-grain models than with those models excluding gas-grain interaction.
Resumo:
Pantothenicacid (PA), vitamin B5, is an essential B vitamin that may be fortified in food and as such requires robust and accurate methods of detection to meet compliance legislation. This study reports the production and characterisation of the first monoclonalantibody (MAb) specific for PA and the subsequent development of a surface plasmon resonance (SPR) biosensorassay for the quantification of PA. The developed assay was compared with an SPR based commercial kit which utilised a polyclonal antibody (PAb). Foodstuffs, including cereals (n = 43), infant formulas and baby food (n = 10) and fruit juices (n = 48) were analysed by both the MAb and PAb biosensorassays and comparison plots showed good correlation (R2 0.77–0.99). The results indicate that the MAb basedbiosensorassay is suitable for the measurement of PA in foodstuffs and has the added advantage of facilitating a constant, long term supply of identical antibody. Preliminary matrix studies suggest the MAb basedassay is an excellent candidate for further validation studies and routine quality assurance based analysis.
Resumo:
Using a validated tetracycline (tet)-regulated MCF7-founder (MCF7F) expression system to modulate expression of CD44 standard form (CD44s), we report the functional importance of CD44s and that of a novel transcriptional target of hyaluronan (HA)/CD44s signaling, EMS1/cortactin, in underpinning breast cancer metastasis. In functional experiments, tet-regulated induction of CD44s potentiated the migration and invasion of MCF7F cells through HA-supplemented Matrigel. EMS1/cortactin was identified by expression profiling as a novel transcriptional target of HA/CD44 signaling, an association validated by quantitative PCR and immunoblotting experiments in a range of breast cancer cell lines. The mechanistic basis underpinning CD44-promoted transcription of EMS1/cortactin was shown to be dependent upon a NFB mechanism, since pharmacological inhibition of IKinase-2 or suppression of p65 Rel A expression attenuated CD44-induced increases in cortactin mRNA transcript levels. Overexpression of a c-myc tagged murine cortactin construct in the weakly invasive, CD44-deficient MCF7F and T47D cells potentiated their invasion. Furthermore, the functional importance of cortactin to CD44s-promoted metastasis was demonstrated by selective suppression of cortactin in CD44-expressing MCF7F-B5 and MDA-MB-231 breast cancer cells using RNAi, which was shown to result in attenuated CD44-promoted invasion and CD44-promoted adhesion to bone marrow endothelial cells (BMECs).
Resumo:
Aims. We undertake an optical and ultraviolet spectroscopic analysis of a sample of 20 Galactic B0-B5 supergiants of luminosity classes Ia, Ib, Iab, and II. Fundamental stellar parameters are obtained from optical diagnostics and a critical comparison of the model predictions to observed UV spectral features is made.
Resumo:
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
The design and development of a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR assay are described for rapid, sensitive and specific detection of swine vesicular disease virus (SVDV) RNA. The assay is designed to target the 2C gene of the SVDV genome and is capable of detecting 2 x 10(2) copies of an RNA standard per reaction. It does not detect any of the other RNA viruses that cause vesicular disease in pigs, or the human enterovirus, Coxsackie B5 virus (CVB5) which is closely related antigenically to SVDV. The linear range of this test was from 2 x 10(2) to 2 x 10(8) copies/mu l. The assay is rapid and can detect SVDV RNA in just over 3.5 h including the time required for nucleic acid extraction. The development of this assay provides a useful tool for the differential diagnosis of SVD or for the detection of SVDV in research applications. This study demonstrates the suitability of MGB probes as a real-time PCR chemistry for the diagnosis of swine vesicular disease. (C) 2010 Elsevier B.V. All rights reserved.