115 resultados para Counterfactual conditional


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the application of Hidden Conditional Random Fields (HCRFs) to modelling speech for visual speech recognition. HCRFs may be easily adapted to model long range dependencies across an observation sequence. As a result visual word recognition performance can be improved as the model is able to take more of a contextual approach to generating state sequences. Results are presented from a speaker-dependent, isolated digit, visual speech recognition task using comparisons with a baseline HMM system. We firstly illustrate that word recognition rates on clean video using HCRFs can be improved by increasing the number of past and future observations being taken into account by each state. Secondly we compare model performances using various levels of video compression on the test set. As far as we are aware this is the first attempted use of HCRFs for visual speech recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors examined cue competition effects in young children using the blicket detector paradigm, in which objects are placed either singly or in pairs on a novel machine and children must judge which objects have the causal power to make the machine work. Cue competition effects were found in a 5- to 6-year-old group but not in a 4-year-old group. Equivalent levels of forward and backward blocking were found in the former group. Children's counterfactual judgments were subsequently examined by asking whether or not the machine would have gone off in the absence of I of 2 objects that had been placed on it as a pair. Cue competition effects were demonstrated only in 5- to 6-year-olds using this mode of assessing causal reasoning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By enabling a comparison between what is and what might have been, counterfactual thoughts amplify our emotional responses to bad outcomes. Well-known demonstrations such as the action effect (the tendency to attribute most regret to a character whose actions brought about a bad outcome) and the temporal order effect (the tendency to undo the last in a series of events leading up to a bad outcome) are often explained in this way. An important difference between these effects is that outcomes are due to decisions in the action effect, whereas in the temporal order effect outcomes are achieved by chance. In Experiment 1, we showed that imposing time pressure leads to a significant reduction in the action but not in the temporal order effect. In Experiment 2, we found that asking participants to evaluate the protagonists (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the challenges faced in health care delivery can be informed through building models. In particular, Discrete Conditional Survival (DCS) models, recently under development, can provide policymakers with a flexible tool to assess time-to-event data. The DCS model is capable of modelling the survival curve based on various underlying distribution types and is capable of clustering or grouping observations (based on other covariate information) external to the distribution fits. The flexibility of the model comes through the choice of data mining techniques that are available in ascertaining the different subsets and also in the choice of distribution types available in modelling these informed subsets. This paper presents an illustrated example of the Discrete Conditional Survival model being deployed to represent ambulance response-times by a fully parameterised model. This model is contrasted against use of a parametric accelerated failure-time model, illustrating the strength and usefulness of Discrete Conditional Survival models.