46 resultados para Cooking (Pork)
Resumo:
Mixtures of cysteine, reducing sugar (xylose or glucose), and starch were extrusion cooked using feed pH values of 5.5, 6.5, and 7.5 and target die temperatures of 120, 150, and 180 degreesC. Volatile compounds were isolated by headspace trapping onto Tenax and analyzed by gas chromatography-mass spectrometry. Eighty and 38 compounds, respectively, were identified from extrudates prepared using glucose and xylose. Amounts of most compounds increased with temperature and pH. Aliphatic sulfur compounds, thiophenes, pyrazines, and thiazoles were the most abundant chemical classes for the glucose samples, whereas for xylose extrudates highest levels were obtained for non-sulfur-containing furans, thiophenes, sulfur-containing furans, and pyrazines. 2-Furanmethanethiol and 2-methyl-3-furanthiol were present in extrudates prepared using both sugars, but levels were higher in xylose samples. The profiles of reaction products were different from those obtained from aqueous or reduced-moisture systems based on cysteine and either glucose or ribose.
Resumo:
The influence of ageing and cooking on the Raman spectrum of porcine longissimus dorsi was investigated. The rich information contained in the Raman spectrum was highlighted, with numerous changes attributed to changes in the environment and conformations of the myofibrillar proteins.
Resumo:
Biosensor-based immunochemical screening assays for the detection of sulfadiazine (SDZ) and sulfamethazine (SMT) in muscle extract from pigs were developed. Samples were extracted with aqueous buffer and then centrifuged. This simple and straightforward preparation allowed up to 40 samples to be processed and analysed in 1 d. The limits of detection for the assays were found to be 5.6 ng g(-1) for SDZ and 7.4 ng g(-1) for SMT. These figures were well below the European and US legal limits for sulfonamides (100 ng g(-1)). The precision (RSD) between runs was
Resumo:
A red-pigmented, radiation-resistant, Gram-negative, rod-shaped bacterium isolated from irradiated pork is described. The D,, values in buffer solution and on pork mince are 3.45 and 5.05 kGy respectively. The strain has been identified as a Deinobacter species
Resumo:
Use of nitrofuran drugs in food-producing animals has been prohibited within the EU because they may represent a public health risk. Monitoring compliance with the ban has focused on the detection of protein-bound nitrofuran metabolites which, in contrast to the parent compounds, are stable and persist in animal tissues. As part of the "FoodBRAND" project, an extensive survey of pork was undertaken across 15 European countries. Samples (n = 1500) purchased at retail outlets were analysed for the nitrofuran metabolites AOZ, AMOZ, AHD and SEM using LC-MS/MS determination of nitrobenzaldehyde derivatives. Limits of quantification for the method were 0.1 mug/kg (AOZ, AMOZ), 0.2 mug/kg (SEM) and 0.5 mug/kg (AHD). Of the 1500 samples tested, measurable residues of nitrofuran metabolites were confirmed in 12 samples (0.8% incidence overall) of which 10 samples were purchased in Portugal (AOZ, 0.3 mug/kg; AMOZ, 0.2-0.6 mug/kg) and one sample each in Italy (AMOZ, 1.0 mug/kg) and Greece (AOZ, 3.0 mug/kg). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Nitrofuran antibiotics cannot be used in food production within the European Union because of their potential health risks to consumers. The recent discovery of their widespread use in global food industries and the finding of semicarbazide in baby food as a result of packaging contamination have focused attention on the toxicity and stability of these drugs and their metabolites. The stability of the nitrofuran marker residues 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ), 1-aminohydantoin (AHD) and semicarbazide (SEM) were tested. Muscle and liver of nitrofuran treated pigs were cooked by frying, grilling, roasting and microwaving. Between 67 and 100% of the residues remained after cooking, demonstrating that these metabolites are largely resistant to conventional cooking techniques and will continue to pose a health risk. The concentration of metabolites in pig muscle and liver did not drop significantly during 8 months of storage at -20 degrees C. Metabolite stock and working standard solutions in methanol were also stable for 10 months at 4 degrees C. Only a 10 ng ml(-1) solution of SEM showed a small drop in concentration over this extended storage period.
Resumo:
Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.
Resumo:
Total arsenic and arsenic speciation was performed on different rice types (basmati, long-grain, polished ([white] and wholegrain [brown]) that had undergone various forms of cooking. The effect of rinse washing, low volume (2.5 : 1 water : rice) and high volume (6 : 1 water : rice) cooking, as well as steaming, were investigated. Rinse washing was effective at removing circa. 10% of the total and inorganic arsenic from basmati rice, but was less effective for other rice types. While steaming reduced total and inorganic arsenic rice content, it did not do so consistently across all rice types investigated. Low volume water cooking did not remove arsenic. High volume water : rice cooking did effectively remove both total and inorganic arsenic for the long-grain and basmati rice (parboiled was not investigated in high volume cooking water experiment), by 35% and 45% for total and inorganic arsenic content, respectively, compared to uncooked (raw) rice. To reduce arsenic content of cooked rice, specifically the inorganic component, rinse washing and high volume of cooking water are effective.
Resumo:
Rice can easily accumulate arsenic (As) into its grain and is known to be the highest As-containing cereal. In addition, the As burden in rice may increase during its processing (such as when cooking using As-polluted water). The health risk posed by the presence of As in cooked rice depends on its release from the matrix along the digestive system (bioaccessibility). Two types of white polished long-grain rice, namely, nonparboiled and parboiled (total As: 202 and 190 mu g As kg(-1), respectively), were cooked in excess of water with different levels of As (0, 10, 47, 222, and 450 mu g As L-1). The bioaccessibility of As from these cooked rice batches was evaluated with an in vitro dynamic digestion process. Rice cooked with water containing 0 and 10 mu g As L-1 showed lower As concentrations than the raw (uncooked) rice. However, cooking water with relatively high As content (>= 47 mu g As L-1) significantly increased the As concentration in the cooked rice up to 8- and 9-fold for the nonparboiled and parboiled rice, respectively. Parboiled rice, which is most widely consumed in South Asia, showed a higher percentage of As bioaccessibility (59% to 99%) than nonparboiled rice (36% to 69%) and most of the As bioaccessible in the cooked rice (80% to 99%) was released easily during the first 2 h of digestion. The estimation of the As intake through cooked rice based on the As bioaccessibility highlights that a few grams of cooked rice (less than 25 g dry weight per day) cooked with highly As contaminated water is equivalent to the amount of As from 2 L water containing the maximum permissible limit (10 mu g As L-1).
Resumo:
Arsenic (As) contamination of rice plants can result in high total As concentrations (t-As) in cooked rice, especially if As-contaminated water is used for cooking. This study examines two variables: (1) the cooking method (water volume and inclusion of a washing step); and (2) the rice type (atab and boiled). Cooking water and raw atab and boiled rice contained 40 g As l-1 and 185 and 315 g As kg-1, respectively. In general, all cooking methods increased t-As from the levels in raw rice; however, raw boiled rice decreased its t-As by 12.7% when cooked by the traditional method, but increased by 15.9% or 23.5% when cooked by the intermediate or contemporary methods, respectively. Based on the best possible scenario (the traditional cooking method leading to the lowest level of contamination, and the atab rice type with the lowest As content), t-As daily intake was estimated to be 328 g, which was twice the tolerable daily intake of 150 g.
Resumo:
The depletion of three banned nitroimidazole drugs (dimetridazole (DMZ), metronidazole (MNZ) and ronidazole (RNZ)) was investigated in black tiger shrimp (Penaeus monodon) following in-water medication. The highest concentrations of residues were measured immediately after the 24 h immersion (day 0). At this time, MNZ and MNZ-OH residues were measured in shrimp tissue samples at concentrations ranging from 361–4189 and 0.28–6.6 μg kg−1, respectively. DMZ and its metabolites HMMNI ranged in concentration between 31509–37780 and 15.0–31.9 μg kg−1, respectively. RNZ and HMMNI concentrations ranged 14530–24206 and 25.0–55 μg kg−1, respectively. MNZ, DMZ and RNZ were the more persistent marker residues and can be detected for at least eight days post-treatment. MNZ-OH was only detectable on day 0 following treatment with MNZ. HMMNI residues were only detectable up to day 1 (0.97–3.2 μg kg−1) or 2 (1.2–4.5 μg kg−1) following DMZ and RNZ treatment, respectively. The parent drugs, MNZ, DMZ and RNZ were still measureable on day 8 at 0.12–1.00, 40.5–55 and 8.8–18.7 μg kg−1, respectively. The study also investigated the stability of nitroimidazole residues under various cooking procedures (frying, grilling, boiling and boiling followed by microwaving). The experiments were carried out in shrimp muscle tissue containing both high and low concentrations of these residues. Different cooking procedures showed the impact on nitroimidazole residue concentration in shrimp tissuetheir concentration depleted significantly, but partially, by boiling and/or microwaving but the compounds were largely resistant to conventional grilling or frying. Cooking cannot therefore be considered as a safeguard against harmful nitroimidazole residues in shrimp.