176 resultados para Control-Display Systems.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.
Resumo:
This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.
Resumo:
This paper investigates a systematic approach for the identification and control of Hammerstein systems over a physical IEEE 802.11b wireless channel.
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.
Resumo:
This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.