8 resultados para Constellations.
Resumo:
In this paper, we propose a novel iterative receiver
strategy for uncoded multiple-input, multiple-output (MIMO)
systems employing improper signal constellations. The proposed
scheme is shown to achieve superior performance and faster
convergence without the loss of spectrum efficiency compared
to the conventional iterative receivers. The superiority of this
novel approach over conventional solutions is verified by both
simulation and analytical results.
Resumo:
In this letter, we propose a lattice-based full diversity design for rate-one quasi-orthogonal space time block codes (QSTBC) to obtain an improved diversity product for eight transmit antennas where the information bits are mapped into 4-D lattice points instead of the common modulation constellations. Particularly, the diversity product of the proposed code is directly determined by the minimum Euclidean distance of the used lattice and can be improved by using the lattice packing. We show analytically and by using simulation results that the proposed code achieves a larger diversity product than the rate-one QSTBCs reported previously.
Resumo:
In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.
Resumo:
In this letter, we propose a simple space-time code to simultaneously achieve both the space and time diversities over time dispersive channels by using two-dimensional lattice constellations and Alamouti codes. The proposed scheme still reserves full space diversity and double-real-symbols joint maximum likelihood decoding which has the similar computation complexity as the Alamouti code.
Resumo:
Conventional approaches of digital modulation schemes make use of amplitude, frequency and/or phase as modulation characteristic to transmit data. In this paper, we exploit circular polarization (CP) of the propagating electromagnetic carrier as modulation attribute which is a novel concept in digital communications. The requirement of antenna alignment to maximize received power is eliminated for CP signals and these are not affected by linearly polarized jamming signals. The work presents the concept of Circular Polarization Modulation for 2, 4 and 8 states of carrier and refers them as binary circular polarization modulation (BCPM), quaternary circular polarization modulation (QCPM) and 8-state circular polarization modulation (8CPM) respectively. Issues of modulation, demodulation, 3D symbol constellations and 3D propagating waveforms for the proposed modulation schemes are presented and analyzed in the presence of channel effects, and they are shown to have the same bit error performance in the presence of AWGN compared with conventional schemes while provide 3dB gain in the flat Rayleigh fading channel.
Resumo:
We propose a low-complexity closed-loop spatial multiplexing method with limited feedback over multi-input-multi-output (MIMO) fading channels. The transmit adaptation is simply performed by selecting transmit antennas (or substreams) by comparing their signal-to-noise ratios to a given threshold with a fixed nonadaptive constellation and fixed transmit power per substream. We analyze the performance of the proposed system by deriving closed-form expressions for spectral efficiency, average transmit power, and bit error rate (BER). Depending on practical system design constraints, the threshold is chosen to maximize the spectral efficiency (or minimize the average BER) subject to average transmit power and average BER (or spectral efficiency) constraints, respectively. We present numerical and Monte Carlo simulation results that validate our analysis. Compared to open-loop spatial multiplexing and other approaches that select the best antenna subset in spatial multiplexing, the numerical results illustrate that the proposed technique obtains significant power gains for the same BER and spectral efficiency. We also provide numerical results that show improvement over rate-adaptive orthogonal space-time block coding, which requires highly complex constellation adaptation. We analyze the impact of feedback delay using analytical and Monte Carlo approaches. The proposed approach is arguably the simplest possible adaptive spatial multiplexing system from an implementation point of view. However, our approach and analysis can be extended to other systems using multiple constellations and power levels.
Resumo:
An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.