48 resultados para Conical tube
Resumo:
To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.
Resumo:
Objective: To compare the efficacy of gentamicin, nebulised via the endotracheal tube (ET), with that of parenteral cefotaxime or parenteral cefuroxime in preventing the formation of ET biofilm.
Setting: General intensive care units in two university teaching hospitals.
Design: The microbiology of ET biofilm from 36 ICU patients eligible to receive antibiotic prophylaxis was examined. Peak and trough tracheal concentrations of gentamicin, cefotaxime or cefuroxime were measured in each patient group, on the 2nd day of intubation.
Patients: Twelve patients received gentamicin (80 mg) nebulised in 4 ml normal saline every 8 h, 12 cefotaxime (1 g, 12 hourly) and 12 cefuroxime (750 mg, 8 hourly). Prophylaxis was continued for the duration of intubation.
Measurements and results: Samples of tracheal secretions were taken on the 2nd day of ventilation for determination of antibiotic concentrations. Following extubation, ETs were examined for the presence of biofilm. Pathogens considered to be common aetiological agents for VAP included Staphylococcus aureus, enterococci, Enterobacteriaceae and pseudomonads. While microbial biofilm was found on all ETs from the cephalosporin group, microbial biofilm of these micro-organisms was found on 7 of the 12 ET tubes from patients receiving cefotaxime [S. aureus (4), pseudomonads (1), Enterobacteriaceae (1), enterococcus (1)] and 8 of the 12 ET tubes from patients receiving cefuroxime [Enterobacteriaceae (6), P. aeruginosa (1) and enterococcus (1)]. While microbial biofilm was observed on five ETs from patients receiving nebulised gentamicin, none of these were from pathogens for ventilator-associated pneumonia (VAP). Tracheal concentrations of both cephalosporins were lower than those needed to inhibit the growth of pathogens recovered from ET tube biofilm. The median (and range) concentrations for cefotaxime were 0.90 (<0.23–1.31) mg/l and 0.28 (<0.23–0.58) mg/l for 2 h post-dose and trough samples, respectively. Two hours post-dose concentrations of cefuroxime (median and range) were 0.40 (0.34–0.83) mg/l, with trough concentrations of 0.35 (<0.22–0.47) mg/l. Tracheal concentrations (median and range) of gentamicin measured 1 h post-nebulisation were 790 (352–>1250) mg/l and then, before the next dose, were 436 (250–1000) mg/l.
Conclusion: Nebulised gentamicin attained high concentrations in the ET lumen and was more effective in preventing the formation of biofilm than either parenterally administered cephalosporin and therefore may be effective in preventing this complication of mechanical ventilation.
Resumo:
The safety and maximum tolerated dose (MTD) of erlotinib with docetaxel/carboplatin were assessed in patients with ovarian cancer. Chemonaive patients received intravenous docetaxel (75 mg m(-2)) and carboplatin (area under the curve 5) on day 1 of a 3-week cycle, and oral erlotinib at 50 (cohort 1), 100 (cohort 2a) or 75 mg day(-1) (cohort 2b) for up to six cycles. Dose-limiting toxicities were determined in cycle 1. Forty-five patients (median age 59 years) received treatment. Dose-limiting toxicities occurred in 1/5/5 patients (cohorts 1/2a/2b). The MTD of erlotinib in this regimen was determined to be 75 mg day(-1) (cohort 2b; the erlotinib dose was escalated to 100 mg day(-1) in 11 out of 19 patients from cycle 2 onwards). Neutropaenia was the predominant grade 3/4 haematological toxicity (85/100/95% respectively). Common non-haematological toxicities were diarrhoea, fatigue, nausea and rash. There were five complete and seven partial responses in 23 evaluable patients (52% response rate). Docetaxel/carboplatin had no measurable effect on erlotinib pharmacokinetics. In subsequent single-agent maintenance, erlotinib was given at 100-150 mg day(-1), with manageable toxicity, until tumour progression. Further investigation of erlotinib in epithelial ovarian carcinoma may be warranted, particularly as maintenance therapy
Resumo:
The H+NO2 titration scheme for the determination of atomic hydrogen densities within a microwave excited flow tube reactor has been investigated by laser-induced fluorescence spectroscopy in the vacuum UV. Absolute hydrogen densities are determined on the basis of calibration by Rayleigh scattering from argon. The measurement is performed at a gas mixture containing 0.5% of D2 added to the main gas H2. The ground state density of the hydrogen atoms generated in the flow tube reactor was inferred from the fluorescence radiation of the spectrally shifted optically thin D-Lyman-a transition.
Resumo:
The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.