4 resultados para Condition-based Maintenance, Condition Monitoring, Prognostics, Reliability
Resumo:
A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.
Resumo:
In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In particular, there is a need for increased bridge monitoring in order to provide adequate maintenance, prioritise allocation of funds and guarantee acceptable levels of transport safety. Existing bridge structural health monitoring (SHM) techniques typically involve direct instrumentation of the bridge with sensors and equipment for the measurement of properties such as frequencies of vibration. These techniques are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive due to the requirement for on-site installations. In recent years, alternative low-cost indirect vibrationbased SHM approaches have been proposed which utilise the dynamic response of a vehicle to carry out “drive-by” pavement and/or bridge monitoring. The vehicle is fitted with sensors on its axles thus reducing the need for on-site installations. This paper investigates the use of low-cost sensors incorporating global navigation satellite systems (GNSS) for implementation of the drive-by system in practice, via field trials with an instrumented vehicle. The potential of smartphone technology to be harnessed for drive by monitoring is established, while smartphone GNSS tracking applications are found to compare favourably in terms of accuracy, cost and ease of use to professional GNSS devices.