71 resultados para Computerized Axial Tomography
Resumo:
PURPOSE: To compare anterior segment parameters between eyes of Chinese and Caucasians using anterior segment optical coherence tomography and to evaluate the association between these parameters and anterior chamber angle width between the two ethnic groups. METHODS: 60 Chinese and 60 Caucasians, 30 with open angles and 30 with narrow angles (defined as Shaffer grade < or =2 in > or =3 quadrants during dark room gonioscopy) in each group, were consecutively enrolled. One eye of each subject was randomly selected for imaging in a completely darkened room. Measurements, including anterior chamber depth (ACD), scleral spur-to-scleral spur distance (anterior chamber width (ACW)), anterior chamber angle width, iris convexity and iris thickness, were compared between the groups. The associations between angle opening distance and biometric measurements were evaluated with univariate and multivariate regression analyses. RESULTS: There were no differences in age, axial length, anterior chamber angle measurements, pupil diameter and iris convexity between Chinese and Caucasians in both open-angle and narrow-angle groups. However, the ACD and ACW were smaller and the iris was thicker in Chinese. In the multivariate analysis, the ACD was the most influential biometric parameter for angle opening distance in both Chinese and Caucasians. After adjusting the effects of axial length, age and sex, ACD and ACW were significantly smaller in Chinese. CONCLUSIONS: Chinese eyes had smaller ACD, smaller ACW and greater iris thickness than Caucasians. ACD was the most influential parameter in determining the angle width in both ethnic groups.
Resumo:
We propose a scheme for the determination of the coupling parameters in a chain of interacting spins. This requires only time-resolved measurements over a single particle, simple data postprocessing and no state initialization or prior knowledge of the state of the chain. The protocol fits well into the context of quantum-dynamics characterization and is efficient even when the spin chain is affected by general dissipative and dephasing channels. We illustrate the performance of the scheme by analyzing explicit examples and discuss possible extensions.
Resumo:
We present Roche tomograms of the G5-G8 IV/V secondary star in the long-period cataclysmic variable BV Cen reconstructed from Magellan Inamori Kyocera Echelle spectrograph echelle data taken on the Magellan Clay 6.5-m telescope. The tomograms show the presence of a number of large, cool star-spots on BV Cen for the first time. In particular, we find a large high-latitude spot which is deflected from the rotational axis in the same direction as seen on the K3-K5 IV/V secondary star in the cataclysmic variable AE Aqr. BV Cen also shows a similar relative paucity of spots at latitudes between 40° and 50° when compared with AE Aqr. Furthermore, we find evidence for an increased spot coverage around longitudes facing the white dwarf which supports models invoking star-spots at the L1 point to explain the low states observed in some cataclysmic variables. In total, we estimate that some 25 per cent of the Northern hemisphere of BV Cen is spotted. We also find evidence for a faint, narrow, transient emission line with characteristics reminiscent of the peculiar low-velocity emission features observed in some outbursting dwarf novae. We interpret this feature as a slingshot prominence from the secondary star and derive a maximum source size of 75000 km and a minimum altitude of 160000 km above the orbital plane for the prominence. The entropy landscape technique was applied to determine the system parameters of BV Cen. We find M1 = 1.18 +/-0.280.16Msolar and M2 = 1.05 +/-0.230.14Msolar and an orbital inclination of i = 53° +/- 4° at an optimal systemic velocity of ? = -22.3 km s-1. Finally, we also report on the previously unknown binarity of the G5IV star HD 220492.
Resumo:
We present a Roche tomography reconstruction of the secondary star in the cataclysmic variable AE Aqr. The tomogram reveals several surface inhomogeneities that are due to the presence of large, cool star-spots. In addition to a number of lower latitude spots, the maps also show the presence of a large, high-latitude spot similar to that seen in Doppler images of rapidly rotating isolated stars, and a relative paucity of spots at a latitude of 40 degrees. In total, we estimate that some 18 per cent of the Northern hemisphere of AE Aqr is spotted.
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin, evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects, the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography, an indirect imaging technique that can be used to map the Roche-lobe-filling secondary. The review begins with a description of the basic principles that underpin Roche tomography, including methods for determining the system parameters. Finally, we conclude with a look at the main scientific highlights to date, including the first unambiguous detection of starspots on AE Aqr B, and consider the future prospects of this technique.
Resumo:
We report on new simultaneous phase-resolved spectroscopic and polarimetric observations of the polar (AM Herculis star) V834 Cen during a high state of accretion. Strong emission lines and high levels of variable circular and linear polarization are observed over the orbital period. The polarization data are modelled using the Stokes imaging technique of Potter et al. The spectroscopic emission lines are investigated using the Doppler tomography technique of Marsh and Horne and the Roche tomography technique of Dhillon and Watson. Up to now, all three techniques have been used separately to investigate the geometry and accretion dynamics in cataclysmic variables. For the first time, we apply all three techniques to simultaneous data for a single system. This allows us to compare and test each of the techniques against each other and hence to derive a better understanding of the geometry, dynamics and system parameters of V834 Cen.
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.
Resumo:
Roche tomography is a technique used for imaging the Roche-lobe-filling secondary stars in cataclysmic variables (CVs). In order to interpret Roche tomograms correctly, one must determine whether features in the reconstruction are real, or the result of statistical or systematic errors. We explore the effects of systematic errors using reconstructions of simulated data sets, and show that systematic errors result in characteristic distortions of the final reconstructions that can be identified and corrected. In addition, we present a new method of estimating statistical errors on tomographic reconstructions using a Monte Carlo bootstrapping algorithm, and show this method to be much more reliable than Monte Carlo methods which 'jiggle' the data points in accordance with the size of their error bars.