4 resultados para Computer network protocols.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.
Resumo:
Stealthy attackers move patiently through computer networks - taking days, weeks or months to accomplish their objectives in order to avoid detection. As networks scale up in size and speed, monitoring for such attack attempts is increasingly a challenge. This paper presents an efficient monitoring technique for stealthy attacks. It investigates the feasibility of proposed method under number of different test cases and examines how design of the network affects the detection. A methodological way for tracing anonymous stealthy activities to their approximate sources is also presented. The Bayesian fusion along with traffic sampling is employed as a data reduction method. The proposed method has the ability to monitor stealthy activities using 10-20% size sampling rates without degrading the quality of detection.
Resumo:
A network connected host is expected to generate/respond to applications and protocols specific messages. Billions of Euro of electricity is wasted to keep idle hosts powered up 24/7 just to maintain network presence. This short paper describes the design of our cooperative Network Connectivity Proxy (NCP) that can impersonate sleeping hosts and responds to packets on their behalf as they were connected and fully operational. Thus, NCP is in fact an efficient approach to reduce network energy waste.
Resumo:
In recent years, the adaptation of Wireless Sensor Networks (WSNs) to application areas requiring mobility increased the security threats against confidentiality, integrity and privacy of the information as well as against their connectivity. Since, key management plays an important role in securing both information and connectivity, a proper authentication and key management scheme is required in mobility enabled applications where the authentication of a node with the network is a critical issue. In this paper, we present an authentication and key management scheme supporting node mobility in a heterogeneous WSN that consists of several low capabilities sensor nodes and few high capabilities sensor nodes. We analyze our proposed solution by using MATLAB (analytically) and by simulation (OMNET++ simulator) to show that it has less memory requirement and has good network connectivity and resilience against attacks compared to some existing schemes. We also propose two levels of secure authentication methods for the mobile sensor nodes for secure authentication and key establishment.