3 resultados para Computations Driven Systems
Resumo:
A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.
Resumo:
This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.
Resumo:
The creation of Causal Loop Diagrams (CLDs) is a major phase in the System Dynamics (SD) life-cycle, since the created CLDs express dependencies and feedback in the system under study, as well as, guide modellers in building meaningful simulation models. The cre-ation of CLDs is still subject to the modeller's domain expertise (mental model) and her ability to abstract the system, because of the strong de-pendency on semantic knowledge. Since the beginning of SD, available system data sources (written and numerical models) have always been sparsely available, very limited and imperfect and thus of little benefit to the whole modelling process. However, in recent years, we have seen an explosion in generated data, especially in all business related domains that are analysed via Business Dynamics (BD). In this paper, we intro-duce a systematic tool supported CLD creation approach, which analyses and utilises available disparate data sources within the business domain. We demonstrate the application of our methodology on a given business use-case and evaluate the resulting CLD. Finally, we propose directions for future research to further push the automation in the CLD creation and increase confidence in the generated CLDs.