1 resultado para Computational time
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aston University Research Archive (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (218)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CentAUR: Central Archive University of Reading - UK (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (9)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (15)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (14)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (164)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (28)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (21)
- Scielo Saúde Pública - SP (13)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (14)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (189)
- University of Washington (2)
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.