61 resultados para Compressed workweek.
Resumo:
In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas.
Resumo:
We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
Audio scrambling can be employed to ensure confidentiality in audio distribution. We first describe scrambling for raw audio using the discrete wavelet transform (DWT) first and then focus on MP3 audio scrambling. We perform scrambling based on a set of keys which allows for a set of audio outputs having different qualities. During descrambling, the number of keys provided and the number of rounds of descrambling performed will decide the audio output quality. We also perform scrambling by using multiple keys on the MP3 audio format. With a subset of keys, we can descramble to obtain a low quality audio. However, we can obtain the original quality audio by using all of the keys. Our experiments show that the proposed algorithms are effective, fast, simple to implement while providing flexible control over the progressive quality of the audio output. The security level provided by the scheme is sufficient for protecting MP3 music content.
Resumo:
Superhydrophobic “lotus effect” materials are typically not sufficiently robust for most real world applications because their small surface features are both easily damaged and vulnerable to fouling. Here, a method for preparing a new type of superhydrophobic (? > 162°) composite material by compression of superhydrophobic metal particles is reported. This material, which has no natural analogue, has low-surface-energy microstructures extending throughout its whole volume. Removing its outer layer by abrasion or cutting deep into it does not result in loss of superhydrophobicity because it merely exposes a fresh portion of the underlying superhydrophobic material. The high contact angle is therefore retained even after accidental damage, and vigorous abrasion can be used to restore hydrophobicity after fouling.
Resumo:
In this paper, a new blind and readable H.264 compressed domain watermarking scheme is proposed in which the embedding/extracting is performed using the syntactic elements of the compressed bit stream. As a result, it is not necessary to fully decode a compressed video stream both in the embedding and extracting processes. The method also presents an inexpensive spatiotemporal analysis that selects the appropriate submacroblocks for embedding, increasing watermark robustness while reducing its impact on visual quality. Meanwhile, the proposed method prevents bit-rate increase and restricts it within an acceptable limit by selecting appropriate quantized residuals for watermark insertion. Regarding watermarking demands such as imperceptibility, bit-rate control, and appropriate level of security, a priority matrix is defined which can be adjusted based on the application requirements. The resulted flexibility expands the usability of the proposed method.
Resumo:
In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.