2 resultados para Competitive ratio for multiprocessor resource sharing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the secrecy outage performance of spectrum sharing multiple-input multiple-output networks using generalized transmit antenna selection with maximal ratio combining over Nakagami-m channels. In particular, the outdated channel state information is considered at the process of antenna selection due to feedback delay. Considering a practical passive eavesdropper scenario, we derive the exact and asymptotic closed-form expressions of secrecy outage probability, which enable us to evaluate the secrecy performance with high efficiency and present a new design insight into the impact of key parameters on the secrecy performance. In addition, the analytical results demonstrate that the achievable secrecy diversity order is only determined by the parameters of the secondary network, while other parameters related to primary or eavesdropper’s channels have a significantly impact on the secrecy coding gain.