56 resultados para Colonização nasal
Resumo:
Ascorbic acid (AA) is thought to be an important antioxidant in the respiratory tract, whose regulation is yet to be fully characterized. We investigated whether AA in respiratory tract lining fluids (RTLFs) can be augmented by oral supplementation with AA. Plasma, nasal lavage fluids (NLFs), induced sputum (IS), and saliva were analyzed for AA immediately before and 2 h after ingestion of 2 g of AA in 13 healthy subjects. Concentrations of AA (median and range) were 52.5 (16.0-88.5), 2.4 (0.18-4.66), 2.4 (0.18-6.00), and 0.55 (0.18-18.90) micromol/l, respectively. Two hours after ingestion of AA, plasma AA increased 2-fold (p = .004), NLF AA increased 3-fold (p = .039), but IS and saliva AA did not increase. As AA concentrations in saliva and tracheobronchial secretions were low compared with other common extracellular components (such as urate), we evaluated the fate of AA in these fluids. Addition of AA to freshly obtained saliva or IS resulted in rapid depletion, which could be largely prevented or reversed by sodium azide or dithiothreitol. These findings suggest that oxidant-producing systems in saliva and airway secretions, such as heme peroxidases and other oxidizing substances, rapidly consume AA. Whereas oral supplementation resulted in detectable increases of AA in NLFs, its levels in tracheobronchial lining fluid, as measured by IS, were unaffected and remained relatively low, suggesting that AA may play a less significant antioxidant role in this compartment as compared with most other extracellular compartments.
Resumo:
Pulmonary fluid clearance is regulated by the active transport of Na+ and Cl- through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na+ channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na+ channels and allow targeted therapy toward Na+ channel function. text of link
Resumo:
We performed comprehensive genome-wide gene expression profiling (GEP) of extranodal nasal-type natural killer/T-cell lymphoma (NKTL) using formalin-fixed, paraffin-embedded tissue (n = 9) and NK cell lines (n = 5) in comparison with normal NK cells, with the objective of understanding the oncogenic pathways involved in the pathogenesis of NKTL and to identify potential therapeutic targets. Pathway and network analysis of genes differentially expressed between NKTL and normal NK cells revealed significant enrichment for cell cycle-related genes and pathways, such as PLK1, CDK1, and Aurora-A. Furthermore, our results demonstrated a pro-proliferative and anti-apoptotic phenotype in NKTL characterized by activation of Myc and nuclear factor kappa B (NF-kappa B), and deregulation of p53. In corroboration with GEP findings, a significant percentage of NKTLs (n = 33) overexpressed c-Myc (45.4%), p53 (87.9%), and NF-kappa B p50 (67.7%) on immunohistochemistry using a tissue microarray containing 33 NKTL samples. Notably, overexpression of survivin was observed in 97% of cases. Based on our findings, we propose a model of NKTL pathogenesis where deregulation of p53 together with activation of Myc and NF-kappa B, possibly driven by EBV LMP-1, results in the cumulative up-regulation of survivin. Down-regulation of survivin with Terameprocol (EM-1421, a survivin inhibitor) results in reduced cell viability and increased apoptosis in tumour cells, suggesting that targeting survivin may be a potential novel therapeutic strategy in NKTL. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
For in vitro studies of airway pathophysiology, primary epithelial cells have many advantages over immortalised cell lines. Nasal epithelial cells are easier to obtain than bronchial epithelial cells and can be used as an alternative for in vitro studies. Our objective was to compare nasal and bronchial epithelial cells from subjects with COPD to establish if these cells respond similarly to pro-inflammatory stimuli. Cell cultures from paired nasal and bronchial brushings (21 subjects) were incubated with cigarette smoke extract (CSE) prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 (TLR-4) message and expression by RT-PCR and FACS respectively. IL-8 release correlated significantly between the two cell types. IL-6 secretion was significantly less from bronchial compared to nasal epithelial cells and secreted concentrations did not correlate. A 4 h CSE incubation was immunosuppressive for both nasal and bronchial cells, however prolonged incubation for 24 h was pro-inflammatory solely for the nasal cells. CSE reduced TLR-4 expression in bronchial cells only after 24 h, and was without effect on mRNA expression. In subjects with COPD, nasal epithelial cells cannot substitute for in vitro bronchial epithelial cells in airway inflammation studies. © 2012 Comer et al.
Resumo:
Background - Normal subjects have a negative nasal transmucosal potential difference (TPD) at rest which becomes more negative with exercise. Patients with cystic fibrosis have a more negative resting nasal TPD than controls. The present study was designed to determine the effects of exercise on the TPD of patients with cystic fibrosis.
Resumo:
Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.
Resumo:
Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.
Resumo:
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders
Resumo:
The present experiments were undertaken to pharmacologically characterize a noninvasive, chronic, experimental dog model of nasal congestion with the overall goal of developing an effective tool for studying the mechanism of action of nasal decongestant drugs.
Resumo:
Experiments were undertaken to characterize a noninvasive chronic, model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Compound 48/80 was administered intranasally to elicit nasal congestion in five beagle dogs either by syringe (0.5 ml) in thiopental sodium-anesthetized animals or as a mist (0.25 ml) in the same animals in the conscious state. Effects of mast cell degranulation on nasal cavity volume as well as on minimal cross-sectional area (A(min)) and intranasal distance to A(min) (D(min)) were studied. Compound 48/80 caused a dose-related decrease in nasal cavity volume and A(min) together with a variable increase in D(min). Maximal responses were seen at 90-120 min. Compound 48/80 was less effective in producing nasal congestion in conscious animals, which also had significantly larger basal nasal cavity volumes. These results demonstrate the utility of using acoustic rhinometry to measure parameters of nasal patency in dogs and suggest that this model may prove useful in studies of the actions of decongestant drugs.