66 resultados para College facilities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Awards:
2007 Opus Architecture and Construction Awards - Highly Commended
2008 Architectural Association of Ireland - Selected for Exhibition
2008 RIAI Best Educational Building
2009 RIBA - Short listed International Award
2009 Imagine Inspirational School Design Compendium
2010 Irish Nomination to OECD Compendium of Exemplary Educational Facilities

Reviews and Publications:
2010 World Architecture News
2009 Perspective Vol 18/No 6
2009 Plan - Art of Architecture and Design
2008 Architecture Ireland, Dublin Volume 236
2007 World Architecture News
2008 Ratoath College, McGarry NÍ Éanaigh Architects ISBN 9780955914102

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid low-level radioactive waste (LLW) is currently being disposed at a number of facilities in the United Kingdom (UK). The safety of these facilities relies to some extent on the use of engineered barriers, such as a cap, to isolate the waste and protect the environment. Generally, the material used as the barrier layer within such a cap should be of low permeability and it should retain this property over long timescales (beyond a few decades normally required for facilities containing non-radioactive wastes). The objective of this research is to determine the mineralogy of selected geological deposits from the UK and Ireland as part of a larger project to examine their suitability as a capping material, particularly on LLW sites. Mineral transformations, as a result of future climate change, may impact on the long-term performance of the cap and even the disposal facility. X-ray diffraction (XRD) was carried-out on the sand, silt and clay fractions of the London Clay, Belfast Upper Boulder Clay, Irish Glacial Till, Belfast Sleech, and Ampthill Clay geological deposits. Minerals were present that could pose both positive and negative effects on the long-term performance of the cap. Smectite, which has a high shrink swell potential, may produce cracks in London Clay, Belfast Upper Boulder Clay and Ampthill Clay capping material during dry, hotter periods as a possible consequence of future climate change; thus, resulting in higher permeability. Ampthill Clay and Belfast Sleech had elevated amounts of organic matter (OM) at 5.93% and 5.88%, respectively, which may also contribute to cracking. Over time, this OM may decompose and result in increased permeability. Gypsum (CaSO4) in the silt and sand fractions of Ampthill Clay may reduce the impact of erosion during wetter periods if it is incorporated into the upper portion of the cap. There are potential negative effects from the acidity created by the weathering of pyrite (FeS2) present in the silt and sand fractions of Belfast Sleech and Ampthill Clay that could impede the growth of grasses used to stabilize the surface of the capping material if this material is used as part of the vegetative soil layer. Additionally, acidic waters generated from pyrite weathering could negatively impact the lower lying capping layers and the disposal facility in general. However, the calcium carbonate (CaCO3) present in the silt and sand fractions of these deposits, and dolomite (CaMg(CO3)2) in Belfast Sleech, may counter act the acidity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: