194 resultados para Col·laborative agents
Resumo:
This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.
Resumo:
To utilize the advantages of existing and emerging Internet techniques and to meet the demands for a new generation of collaborative working environments, a framework with an upperware–middleware architecture is proposed, which consists of four layers: resource layer, middleware layer, upperware layer and application layer. The upperware contains intelligent agents and plug/play facilities; the former coordinates and controls multiple middleware techniques such as Grid computing, Web-services and mobile agents, while the latter are used for the applications, such as semantic CAD, to plug and loose couple into the system. The method of migrating legacy software using automatic wrapper generation technique is also presented. A prototype mobile environment for collaborative product design is presented to illustrate the utilization of the CWE framework in collaborative design and manufacture.
Resumo:
In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal.
Resumo:
Planning is an essential process in teams of multiple agents pursuing a common goal. When the effects of actions undertaken by agents are uncertain, evaluating the potential risk of such actions alongside their utility might lead to more rational decisions upon planning. This challenge has been recently tackled for single agent settings, yet domains with multiple agents that present diverse viewpoints towards risk still necessitate comprehensive decision making mechanisms that balance the utility and risk of actions. In this work, we propose a novel collaborative multi-agent planning framework that integrates (i) a team-level online planner under uncertainty that extends the classical UCT approximate algorithm, and (ii) a preference modeling and multicriteria group decision making approach that allows agents to find accepted and rational solutions for planning problems, predicated on the attitude each agent adopts towards risk. When utilised in risk-pervaded scenarios, the proposed framework can reduce the cost of reaching the common goal sought and increase effectiveness, before making collective decisions by appropriately balancing risk and utility of actions.
Resumo:
The relative sensitivity of neoplastic cells to DNA damaging agents is a key factor in cancer therapy. In this paper, we show that pretreatment of Burkitt's lymphoma cell lines expressing the c-met protooncogene with hepatocyte growth factor (HGF) protects them from death induced by DNA damaging agents commonly used in tumour therapy. This protection was observed in assays based on morphological assessment of apoptotic cells and DNA fragmentation assays. The protection was dose- and time-dependent — maximal protection requiring pre-incubation with 100 ng/ml HGF for 48 h. Western blotting analysis and flow cytometric studies revealed that HGF inhibited doxorubicin- and etoposide-induced decreases in the levels of the anti-apoptotic proteins Bcl-XL, and to a lesser extent Bcl-2, without inducing changes in the pro-apoptotic Bax protein. Overall, these studies suggest that the accumulation of HGF within the microenvironment of neoplastic cells may contribute to the development of a chemoresistant phenotype.