59 resultados para Coated fertilizer
Resumo:
Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The associated problems of bacterial biofilm formation and encrustation that may cause obstruction or blockage of urethral catheters and ureteral stents often hinders the effective use of biomaterials within the urinary tract. In this in vitro study, we have investigated the surface properties of a hydrophilic polyvinyl pyrollidone) (PVP)-coating applied to polyurethane and determined its suitability for use as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of uncoated polyurethane and silicone. The PVP-coated polyurethane was significantly more hydrophilic and more lubricious than either uncoated polyurethane or silicone. Adherence of a hydrophilic Escherichia coli isolate to PVP-coated polyurethane and uncoated polyurethane was similar but significantly less than adherence to silicone. Adherence of a hydrophobic Enterococcus faecalis isolate to PVP-coated polyurethane and silicone was similar but was significantly less than adherence to uncoated polyurethane. Struvite encrustation was similar on the PVP-coated polyurethane and silicone but significantly less than on uncoated polyurethane. Furthermore, hydroxyapatite encrustation was significantly less on the PVP-coated polyurethane than on either uncoated polyurethane or silicone. The results suggest that the PVP-coating could be useful in preventing complications caused by bacterial biofilm formation and the deposition of encrustation on biomaterials implanted in the urinary tract and, therefore, warrants further evaluation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In the manufacture of granular NPK fertilizer the product is cooled before packaging and storage in moisture-proof bags. It has been shown that the temperature of the fertilizer prior to packing is significant in that at high temperatures, drying of the granules takes place in the bag which causes an increase in the humidity of the air surrounding the granules and thus an increase in moisture content at the granule - granule interface. This surface moisture was shown to increase the likelihood of agglomeration in the fertilizer by a capillary adhesion/unconfined yield stress model. An iterative model was set up to establish conditions that would prevent drying occurring, which takes into account fertilizer drying rate, fertilizer cooling rate cooling rate and the effect of coating oils on the drying mechanism.
Anti-adherent and antifungal activities of surfactant-coated poly (ethylcyanoacrylate) nanoparticles
Resumo:
Application of non-drug-loaded poly(ethylcyanoacrylate) nanoparticles (NP) to buccal epithelial cells (BEC) imparted both anti-adherent and antifungal effects. NP prepared using emulsion polymerisation and stabilised using cationic, anionic and non-ionic surfactants decreased Candida albicans blastospore adhesion, an effect attributable to the peripheral coating of surfactant. Cetrimide and Pluronic (R) P 123 were shown to be most effective, producing mean percentage reductions in blastospore adherence of 52.7 and 37.0, respectively. Resultant zeta potential matched the polarity of the surfactant, with those stabilised using cetrimide being especially positive (+31.3 mV). Preparation using anionic surfactants was shown to be problematic, with low yield and wide particle size distribution. Evaluation of the antifungal effect of the peripheral coat was evaluated using zones of inhibition and viable counts assays. The former test revealed poor surfactant diffusion through agar, but did show evidence of limited kill. However, the latter method showed that cationic surfactants associated with NP produced high levels of kill, in contrast to those coated with anionic surfactants, where kill was not evident. Non-ionic surfactant-coated NP produced intermediate kill rates. Results demonstrate that surfactant-coated NP, particularly the cationic types, form the possible basis of a prophylactic formulation that primes the candidal target (BEC) against fungal adhesion and infection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.