14 resultados para Coastal landscape
Resumo:
The common lizard (Zootoca vivipara) is Ireland’s only native reptile, forming a key part of the island’s biodiversity. However, there is a general paucity of distributional and abundance data for the species. In this study, we collated incidental records for common lizard sightings to define the distribution of the species in Northern Ireland. Maximum entropy modelling was employed to describe species-habitat associations. The resulting predicted landscape favourability was used to evaluate the current status of the species based on the distribution of its maximum potential range in relation to the degree of fragmentation of remaining suitable habitat. In common with previous studies in the Republic of Ireland, sightings were highly clustered indicating under-recording, observer bias, and fragmentation of suitable habitat. A total of 98 records were collated from 1905 to 2009. The species was recorded in 63 (ca. 34%) of 186 × 10 km Northern Irish grid squares. Lizard occurrence was strongly and positively associated with landscapes dominated by heathland, bog and coastal habitats. The single best approximating model correctly classified the presence of lizards in 84.2% of cases. Upland heath, lowland raised bog and sand dune systems are all subject to Habitat Action Plans in Northern Ireland and are threatened by conversion to agriculture, afforestation, invasive species encroachment and infrastructural development. Consequently, remaining common lizard populations are likely to be small, isolated and highly fragmented. Establishment of an ecological network to preserve connectivity of remaining heath and bog will not only benefit remaining common lizard populations but biodiversity in general.
Resumo:
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.
We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.
Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.
Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.
Resumo:
The Northern Ireland conflict has been described as one of the most over-researched conflicts in the world. However, this is a relatively recent development. For many years, when the conflict was most intense, social scientists in Northern Ireland were silent and not vocal. The sectarian violence that dominated the life in Northern Ireland as well as the fact that the country was a fundamentally unjust society contributed to this silence. However, since the peace process began in the mid 1990s, a growing number of qualitative studies have been published, utilising one-to-one interviews and focus group discussions, in order to "make people's voices heard" and deal with the consequences of the so-called "Troubles". This paper looks into the emergence of a qualitative social research landscape in Northern Ireland beyond the conflict and explores issues so far neglected. It is argued that a number of factors have contributed to this, among them the availability of research funding to voluntary and community sector organisations that use their data to influence policy-making and equality legislation in a country which is still deeply divided along socio-religious lines.
Resumo:
Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.
Resumo:
The fundamental controls on the initiation and development of gravel-dominated deposits (beaches and barriers) on paraglacial coasts are particle size and shape, sediment supply, storm wave activity (primarily runup), relative sea-level (RSL) change, and terrestrial basement structure (primarily as it affects accommodation space). This paper examines the stochastic basis for barrier organisation as shown by variation in gravel barrier architecture. We recognise punctuated self-organisation of barrier development that is disrupted by short phases of barrier instability. The latter results from positive feedback causing barrier breakdown when sediment supply is exhausted. We examine published typologies for gravel barriers and advocate a consolidated perspective using rate of RSL change and sediment supply. We also consider the temporal variation in controls on barrier development. These are examined in terms of a simple behavioural model (BARCH) for prograding gravel barrier architecture and its sensitivity to such controls. The nature of macroscale (102–103 years) gravel barrier development, including inherited characteristics that influence barrier genesis, as well as forcing from changing RSL, sediment supply, headland control and barrier inertia, is examined in the context of long-surviving barriers along the southern England coastline.
Resumo:
One habitat management requirement forced by 21st century relative sea-level rise (RSLR), will be the need to re-comprehend the dimensions of long-term transgressive behaviour of coastal systems being forced by such RSLR. Fresh approaches to the conceptual modelling and subsequent implementation of new coastal and peri-marine habitats will be required. There is concern that existing approaches to forecasting coastal systems development (and by implication their associated scarce coastal habitats) over the next century depend on a certain premise of orderly spatial succession of habitats. This assumption is shown to be questionable given the possible future rates of RSLR, magnitude of shoreline retreat and the lack of coastal sediment to maintain the protective morphologies to low-energy coastal habitats. Of these issues, sediment deficiency is regarded as one of the major problem for future habitat development. Examples of contemporary behaviour of UK coasts show evidence of coastal sediment starvation resulting from relatively stable RSLR, anthropogenic sealing of coastal sources, and intercepted coastal sediment pathways, which together force segmentation of coastal systems. From these examples key principles are deduced which may prejudice the existence of future habitats: accelerated future sediment demand due to RSLR may not be met by supply and, if short- to medium-term hold-the-line policies predominate, long-term strategies for managed realignment and habitat enhancement may prove impossible goals. Methods of contemporary sediment husbandry may help sustain some habitats in place but otherwise, instead of integrated coastal organization, managers may need to consider coastal breakdown, segmentation and habitat reduction as the basis of 21st century coastal evolution and planning.