94 resultados para Cloning of cDNA encoding Large isoform of rubisco activase
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides and several studies involving molecular cloning of their biosynthetic precursors have revealed that many exhibit highly-conserved domain architectures with an associated high degree of primary structural conservation of the signal peptides. This conservation of primary structure is reflected at the level of nucleotide sequence — a finding that has permitted our group to design primers to these sites facilitating “shotgun” cloning using cDNA libraries from uninvestigated species. Here we describe the results of such an approach using a skin secretion-derived cDNA library from the Fujian large-headed frog, Limnonectes fujianensis, a completely unstudied species. In over 50 clones studied by this approach, 12 were found to encode peptides of different primary structure. Representatives of 5 different families of antimicrobial peptides derived from the skins of ranid frogs were found and these were brevinin-1 (n = 3), the ranatuerin-2 (n = 3), esculentin-2 (n = 1), temporin (n = 1) and chensinin (n = 1). Three clones encoded peptides that were novel with no homologues present in contemporary on-line databases. These included two related 16-mer peptides, named peptides SC-16a and b, and an unrelated 24-mer, named peptide AG-24. Preliminary biological characterisation of SC-16a has demonstrated an antimicrobial activity against Gram-negative bacteria with a minimal inhibitory concentration of 35 µM with no observable haemolysis up to 200 µM. This finding may suggest that this peptide represents a novel class of antimicrobial with little effect on eukaryotic membranes.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Tryptophyllins are a heterogenous group of amphibian skin peptides originally identified in skin extracts of Neotropical leaf frogs, Phyllomedusa sp., by chemical means. Until now, biosynthetic precursor structure and biological activity remain unreported. Here we describe the isolation of a novel, post-translationally modified tryptophyllin, Lys-Pro-Hyp-Ala-Trp-Val-Pro.amide (PdT-1), from the skin secretion of the Mexican leaf frog, Pachymedusa dacnicolor. Using a 3'- and 5'-RACE strategy and an in vitro skin cDNA library, the PdT-1-encoding precursor was cloned and found to consist of an open-reading frame of 62 amino acids with a single copy of PdT-1 located towards the C-terminus. A synthetic replicate of PdT-1 was found to be a potent myoactive agent, relaxing mammalian arterial smooth muscle and contracting small intestinal smooth muscle at nanomolar concentrations. PdT-1 is thus the first amphibian skin tryptophyllin to be pharmacologically characterized and the first whose precursor cDNA has been cloned.
Resumo:
Helokinestatins 1–5 represent a novel family of bradykinin antagonist peptides originally isolated from the venom of the Gila Monster, Heloderma suspectum. We found that they were encoded in tandem along with a single copy of C-type natriuretic peptide (CNP), by two different but almost identical biosynthetic precursors that were cloned from a venom-derived cDNA library. Here we have applied the same strategy to the venom of a related species, the Mexican beaded lizard, Heloderma horridum. Lyophilised venom was used as a surrogate tissue to generate a cDNA library that was interrogated with primers from the previous study and for reverse phase HPLC fractionation. The structure of a single helokinestatin precursor was obtained following sequencing of 20 different clones. The open-reading frame contained 196 amino acid residues, somewhat greater than the 177–178 residues of the corresponding helokinestatin precursors in H. suspectum. The reason for this difference in size was the insertion of an additional domain of 18 amino acid residues encoding an additional copy of helokinestatin-3. Helokinestatin-6 (GPPFNPPPFVDYEPR) was a novel peptide from this precursor identified in venom HPLC fractions. A synthetic replicate of this peptide antagonised the relaxation effect of bradykinin on rat arterial smooth muscle. The novel peptide family, the helokinestatins, have been shown to be present in the venom of H. horridum and to be encoded by a single precursor of different structure to those from H. suspectum. Studies such as this reveal the naturally-selected structures of bioactive peptides that have been optimised for purpose and provide the scientist with a natural analogue library for pharmacological investigation.
Resumo:
Amphibian skin secretions are renowned as complex mixtures of bioactive peptides many of which are analogues of endogenous regulatory peptides. While skin secretions can be obtained non-invasively for peptidome analysis, parallel studies on the granular gland transcriptome required specimen sacrifice. The aim of the present study was to analyse archived skin secretions to determine the robustness of bioactive peptide precursor-encoding polyadenylated mRNAs in an attempt to extract maximum molecular information from rare samples. A range of solvated skin secretion samples were examined after lyophilisation for their potential to generate viable and comprehensive cDNA libraries based upon polyadenylated mRNA capture and amplification/cloning using appropriate commercial kits. Here we present unequivocal data that the granular gland transcriptome persists in a PCR amenable format even after storage for as long as 12 years in 0.1%(v/v) aqueous trifluoroacetic acid (TFA). We used a pooled skin secretion sample (2 ml) from the yellow-bellied toad, Bombina variegata (n = 14), containing the equivalent of 5 mg/ml of lyophilised skin secretion, that had been used in part for peptide isolation purposes in 1998 and had been stored at - 20 °C since that time. In the first cloning experiment, 12 different bombinin-like peptide precursor cDNAs were cloned encoding 17 different bombinins, the majority of which were novel. Subsequently, bombesin and bradykinin-related peptide precursor transcripts have been cloned successfully. These data illustrate the unexpected stability/longevity of the transcriptome in these secretions — a finding with implications for both this field of research and for the wider field of molecular biology.
Resumo:
The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation.
Resumo:
Prokineticins are small (8 kDa), biologically active secretory proteins whose primary structures have been highly conserved throughout the Animal Kingdom. Representatives have been identified in the defensive skin secretions of several amphibians reflecting the immense structural/functional diversity of polypeptides in such. Here we describe the identification of a prokineticin homolog (designated Bo8) from the skin secretion of the Oriental fire-bellied toad (Bombina orientalis). Full primary structural characterization was achieved using a combination of direct Edman microsequencing, mass spectrometry and cloning of encoding skin cDNA. The latter approach employed a recently described technique that we developed for the cloning of secretory peptide cDNAs from lyophilized skin secretion, and this was further extended to employ lyophilized skin as the starting material for cDNA library construction. The Bo8 precursor was found to consist of an open-reading frame of 96 amino acid residues consisting of a putative 19-residue signal peptide followed by a single 77-residue prokineticin (Mr = 7990 Da). Amino acid substitutions in skin prokineticins from the skin secretions of bombinid toads are confined to discrete sites affording the necessary information for structure/activity studies and analog design.
Resumo:
Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X = Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X = Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr2, Ile9)-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.
Resumo:
Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.
Resumo:
We have determined that gene HI#1181 of Haemophilus influenzae is a homolog of Escherichia coli gmhA (previously designated lpcA) (J. S. Brooke and M. A. Valvano, J. Biol. Chem. 271:3608-3614, 1996), which encodes a phosphoheptose isomerase catalyzing the first step of the biosynthesis of ADP-L-glycero-D-manno heptose. Mutations in this gene are associated with a heptoseless core lipopolysaccharide which determines an increased outer membrane permeability to hydrophobic compounds. The cloned H. influenzae gmhA restored the synthesis of a complete core in the gmhA-deleted E. coli strain chi711. Amino acid sequence comparisons of the GmhA proteins of E. coli and H. influenzae with other proteins in the databases revealed the existence of a novel family of phosphosugar a1do-keto isomerases.
Resumo:
Tryptophyllins are a group of small (4–14 amino acids), heterogenous peptides, mostly from the skins of hylid frogs from the genera, Phyllomedusa and Litoria. To date, more than forty TPHs have been discovered in species from these two genera. Here, we describe the identification of a novel tryptophyllin type 3 peptide, PhT-3, from the extracts of skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis, and molecular cloning of its precursor-encoding cDNA from a cDNA library constructed from the same skin sample. Full primary structural characterization was achieved using a combination of direct Edman degradation, mass spectrometry and deduction from cloned skin-derived cDNA. The open-reading frame of the precursor cDNA was found to consist of 63 amino acid residues. The mature peptide arising from this precursor contains a post-translationally modified N-terminal pyroglutamate (pGlu) residue, formed from acid-mediated cyclization of an N-terminal Gln (Q) residue, and with the structure: pGlu-Asp-Lys-Pro-Phe-Trp-Pro-Pro-Pro-Ile-Tyr-Pro-Met. Pharmacological assessment of a synthetic replicate of this peptide on phenylephrine preconstricted rat tail artery segments, revealed a reduction in relaxation induced by bradykinin. PhT-3 was also found to mediate antiproliferative effects on human prostate cancer cell lines.
Resumo:
Amphibian skin is a morphologically, biochemically and physiologically complex organ that performs the wide range of functions necessary for amphibian survival. Here we describe the primary structures of representatives of two novel classes of amphibian skin antimicrobials, dermatoxin and phylloxin, from the skin secretion of Phyllomedusa sauvagei, deduced from their respective precursor encoding cDNAs cloned from a lyophilized skin secretion library. A degenerate primer, designed to a highly conserved domain in the 5'-untranslated region of analogous peptide precursor cDNAs from Phyllomedusa bicolor, was employed in a 3'-RACE reaction. Peptides with molecular masses coincident with precursor-deduced mature toxin peptides were identified in LC/MS fractions of skin secretion and primary structures were confirmed by MS/MS fragmentation. This integrated experimental approach can thus rapidly expedite the primary structural characterization of amphibian skin peptides in a manner that circumvents specimen sacrifice whilst preserving robustness of scientific data.
Resumo:
Using a novel technique that we have developed for cloning of amphibian skin secretion peptide cDNAs from lyophilized samples, we report here that maximakinin (DLPKINRKGP-bradykinin) is encoded by two different cDNAs, named BMK-1 and BMK-2, containing either four tandem repeat sequences or a single copy. The open reading frames of both precursor cDNAs were found to be 152 and 116 amino acid residues, respectively. These data provide evidence that the structural diversity of peptides in amphibian skin secretions arising from molecular evolutionary events, can be mediated by parallel diversity in encoding mRNAs that in itself may reflect serial gene duplications.